

Lecture 2

Binary Search Trees

Binary Search Trees

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

- **Insert** an element.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

- **Insert** an element.
- **Search** for an element with the key k .

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

- **Insert** an element.
- **Search** for an element with the key k .
- **Delete** an element.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

- **Insert** an element.
- **Search** for an element with the key k .
- **Delete** an element.
- **Minimum** or **Maximum** of the set.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

- **Insert** an element.
- **Search** for an element with the key k .
- **Delete** an element.
- **Minimum** or **Maximum** of the set.
- **Successor** or **Predecessor** of an element of the set.

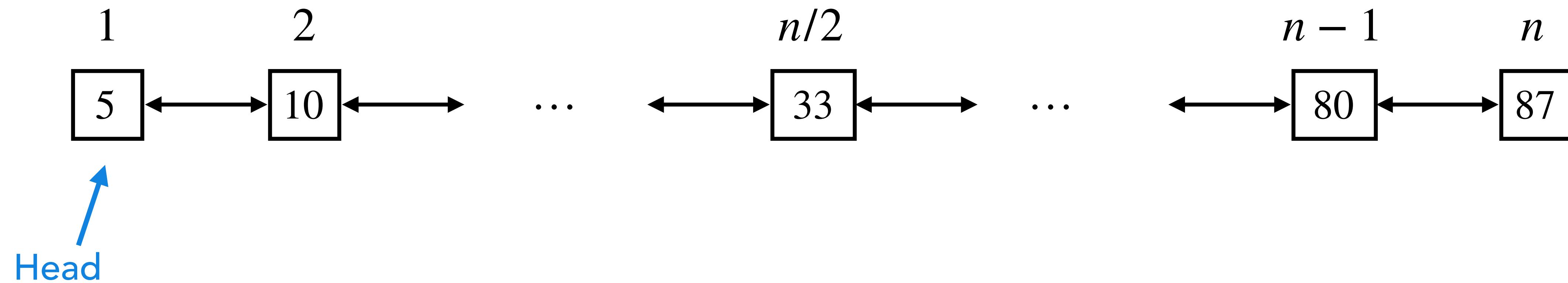
Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a **dynamic set** that supports operations such as:

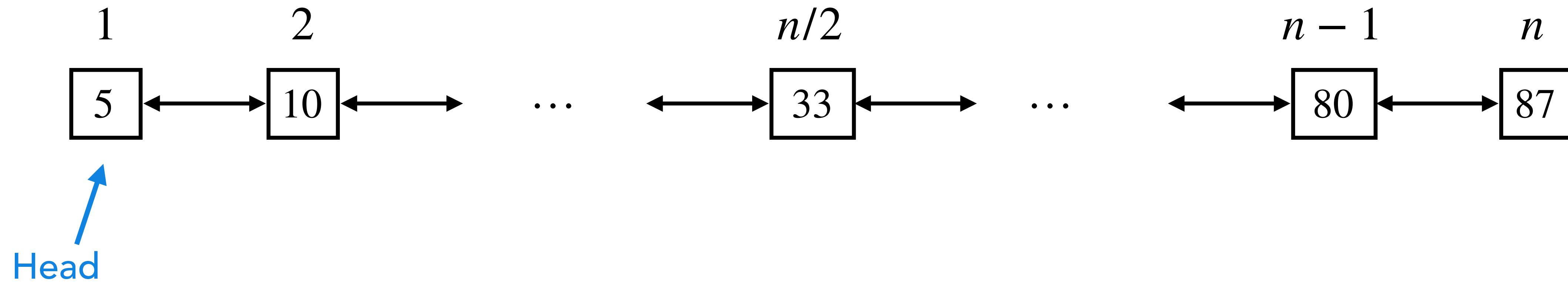
- **Insert** an element.
- **Search** for an element with the key k .
- **Delete** an element.
- **Minimum** or **Maximum** of the set.
- **Successor** or **Predecessor** of an element of the set.

Let's first implement the operations through sorted linked list

Linked List Implementation

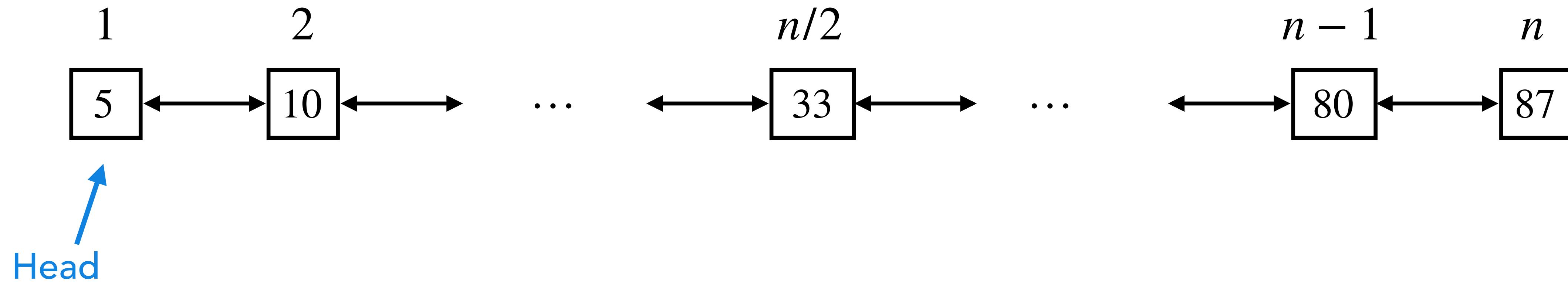


Linked List Implementation



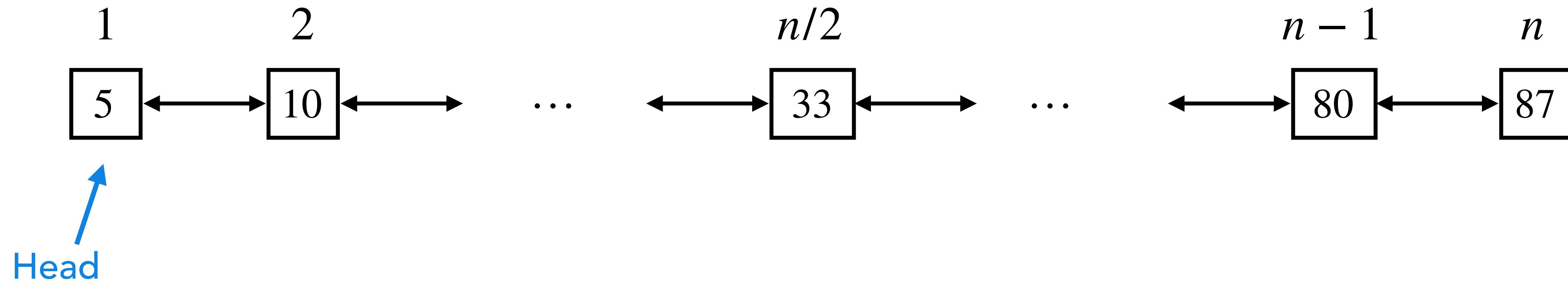
Time required in Linked list implementation	
Insert	
Search	
Delete	
Min/Max	
Succ/Pred	

Linked List Implementation



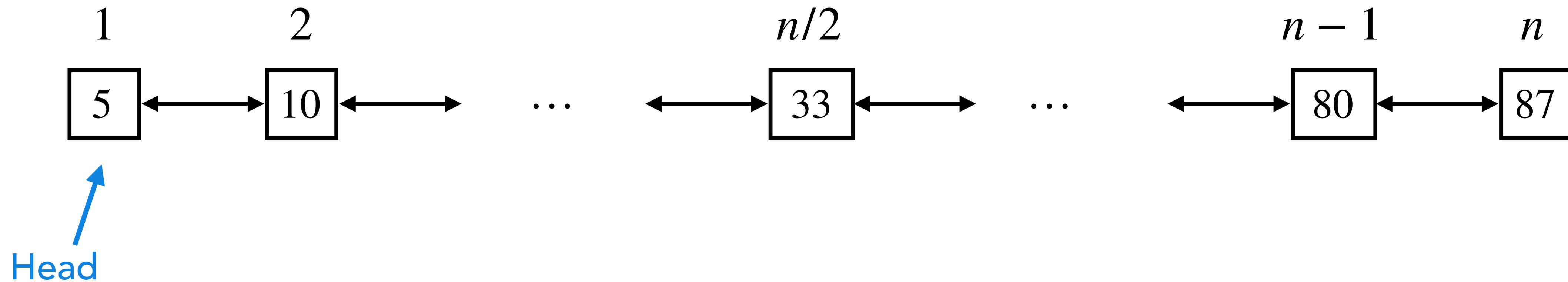
Time required in Linked list implementation	
Insert	$\Theta(n)$
Search	
Delete	
Min/Max	
Succ/Pred	

Linked List Implementation



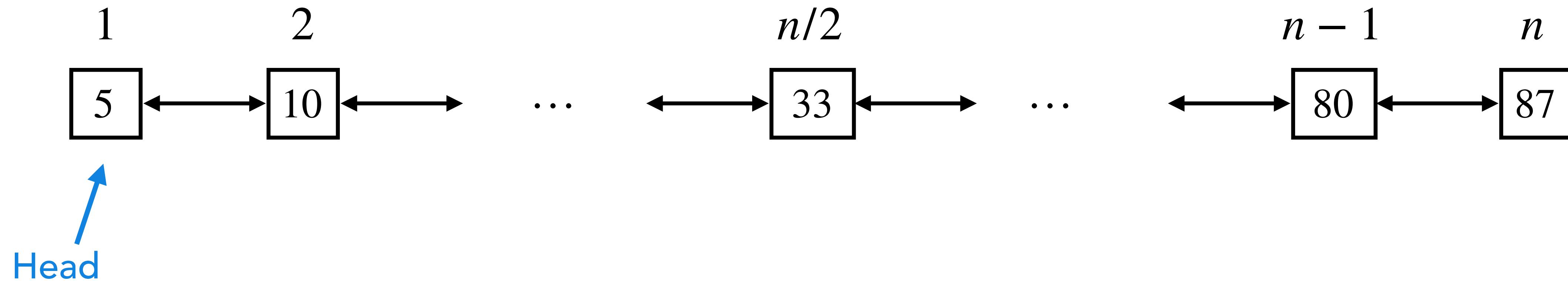
Time required in Linked list implementation	
Insert	$\Theta(n)$
Search	$\Theta(n)$
Delete	
Min/Max	
Succ/Pred	

Linked List Implementation



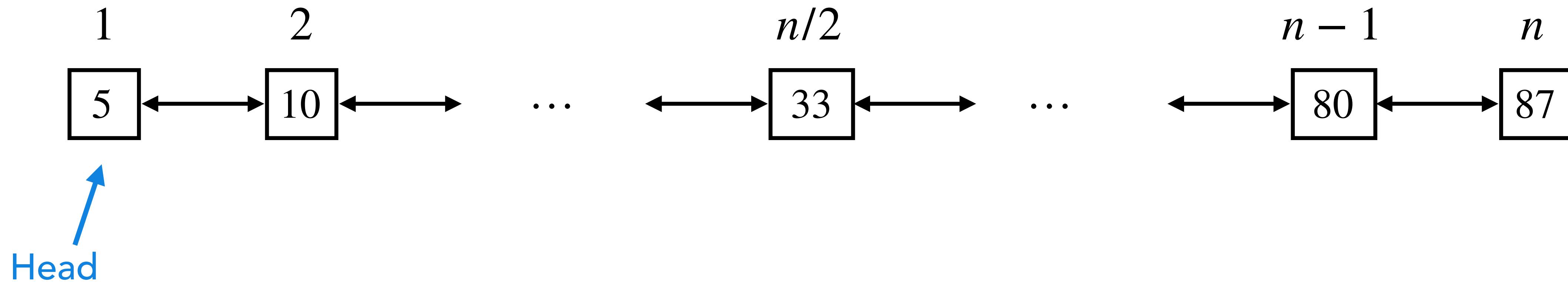
Time required in Linked list implementation	
Insert	$\Theta(n)$
Search	$\Theta(n)$
Delete	$\Theta(1)$
Min/Max	
Succ/Pred	

Linked List Implementation



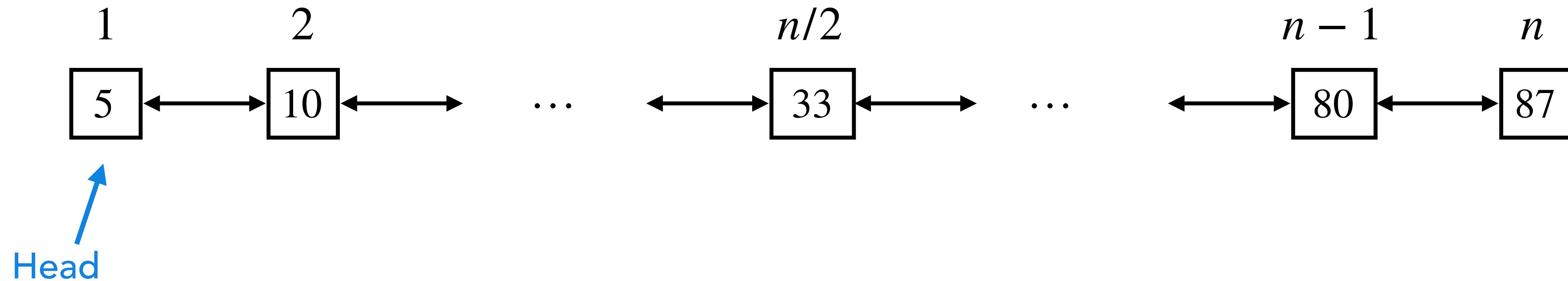
Time required in Linked list implementation	
Insert	$\Theta(n)$
Search	$\Theta(n)$
Delete	$\Theta(1)$
Min/Max	$\Theta(1), \Theta(n)$
Succ/Pred	

Linked List Implementation



Time required in Linked list implementation	
Insert	$\Theta(n)$
Search	$\Theta(n)$
Delete	$\Theta(1)$
Min/Max	$\Theta(1), \Theta(n)$
Succ/Pred	$\Theta(1)$

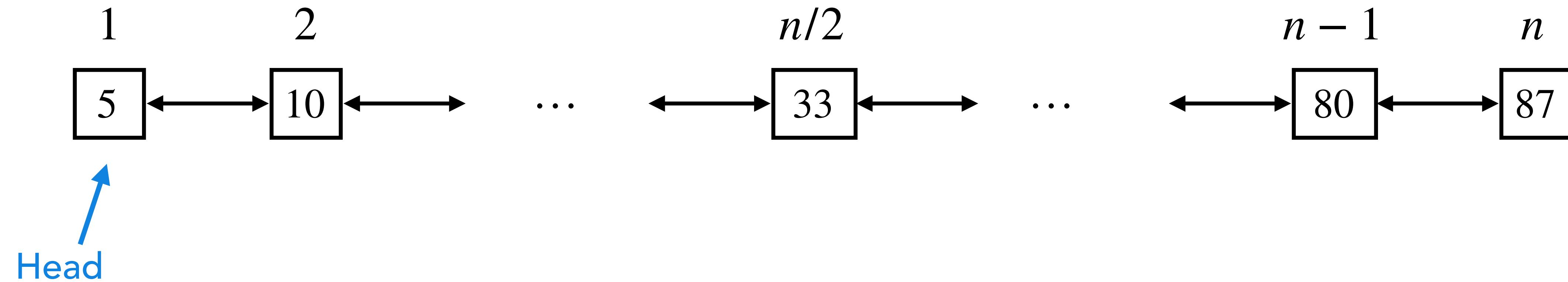
Linked List Implementation



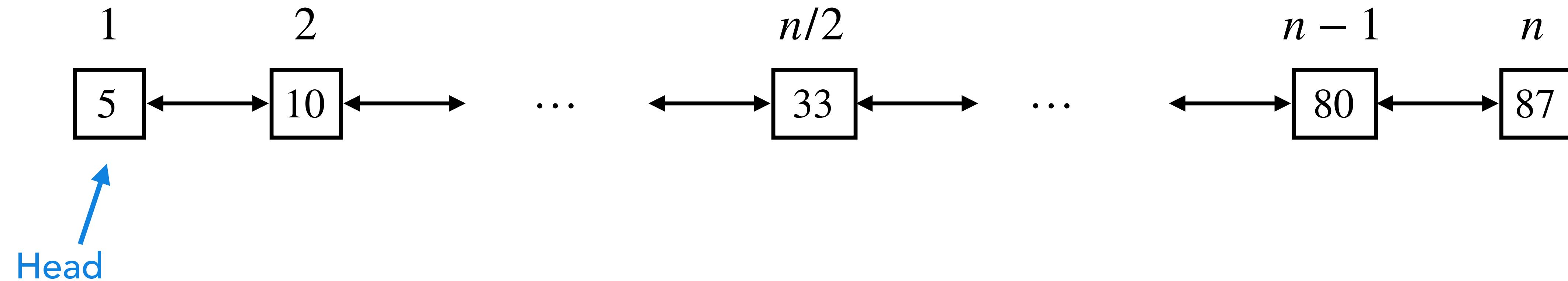
Time required in Linked list implementation	
Insert	$\Theta(n)$
Search	$\Theta(n)$
Delete	$\Theta(1)$
Min/Max	$\Theta(1), \Theta(n)$
Succ/Pred	$\Theta(1)$

Let's try to reduce this first

Reducing Search Time in Linked Lists

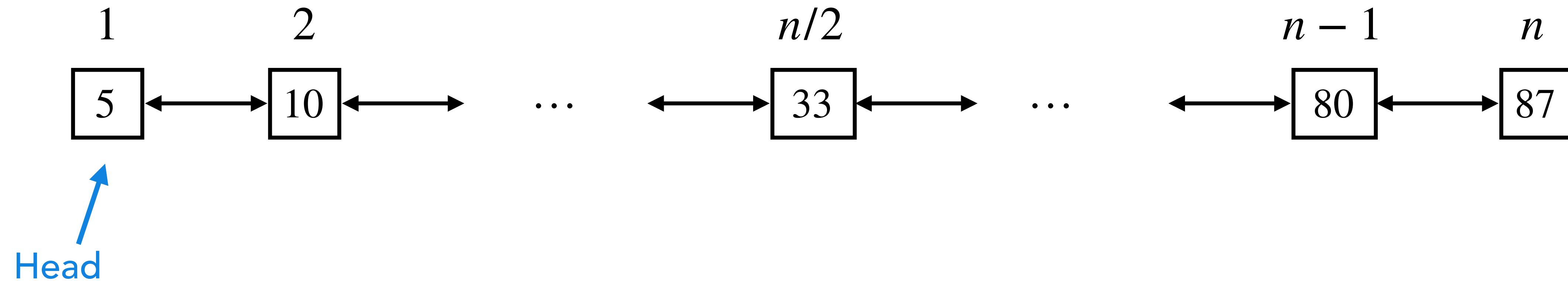


Reducing Search Time in Linked Lists



Searching for a node may take at most n comparisons.

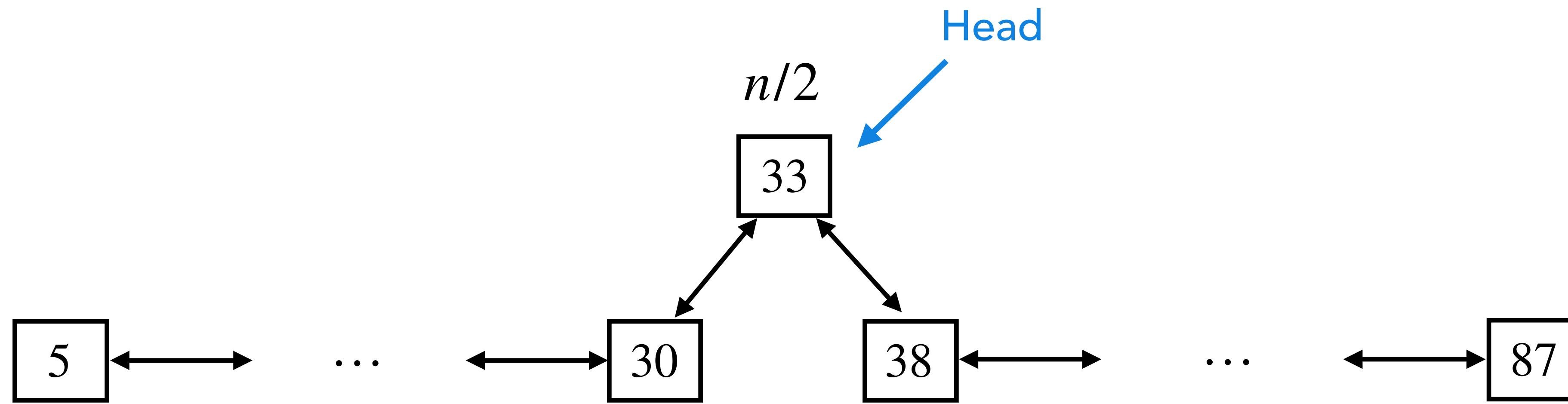
Reducing Search Time in Linked Lists



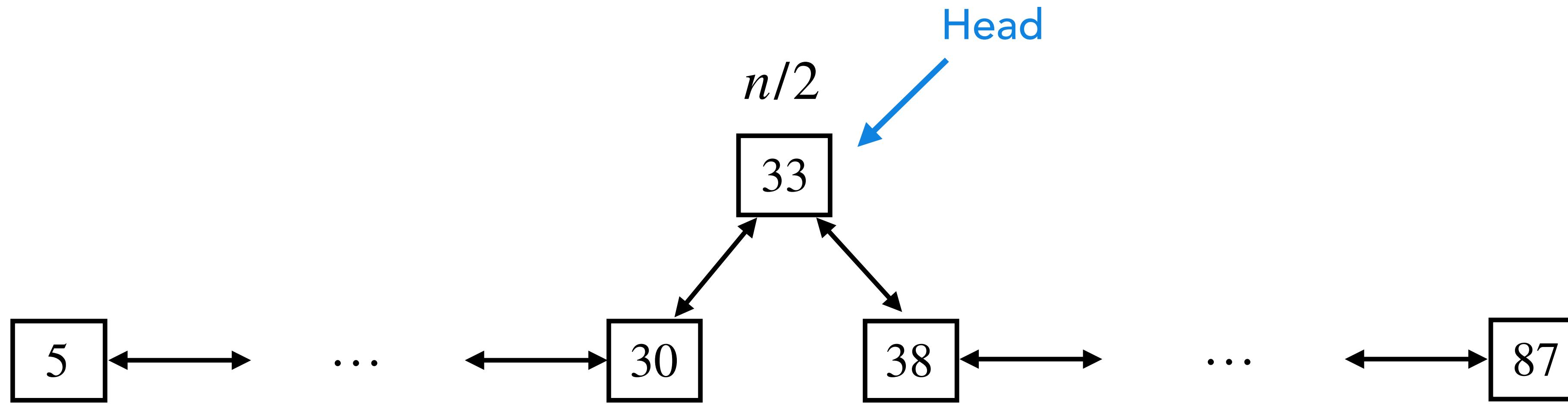
Searching for a node may take at most n comparisons.

What can be done to find a node with around $n/2$ comparisons?

Reducing Search Time in Linked Lists

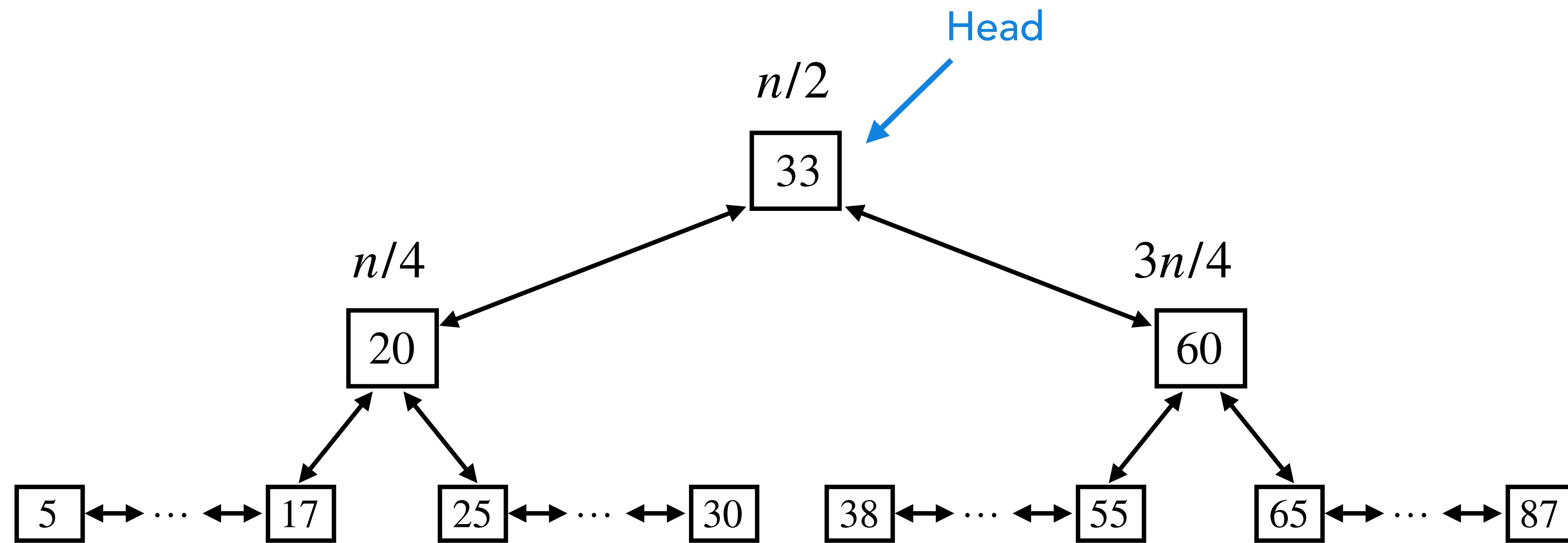


Reducing Search Time in Linked Lists

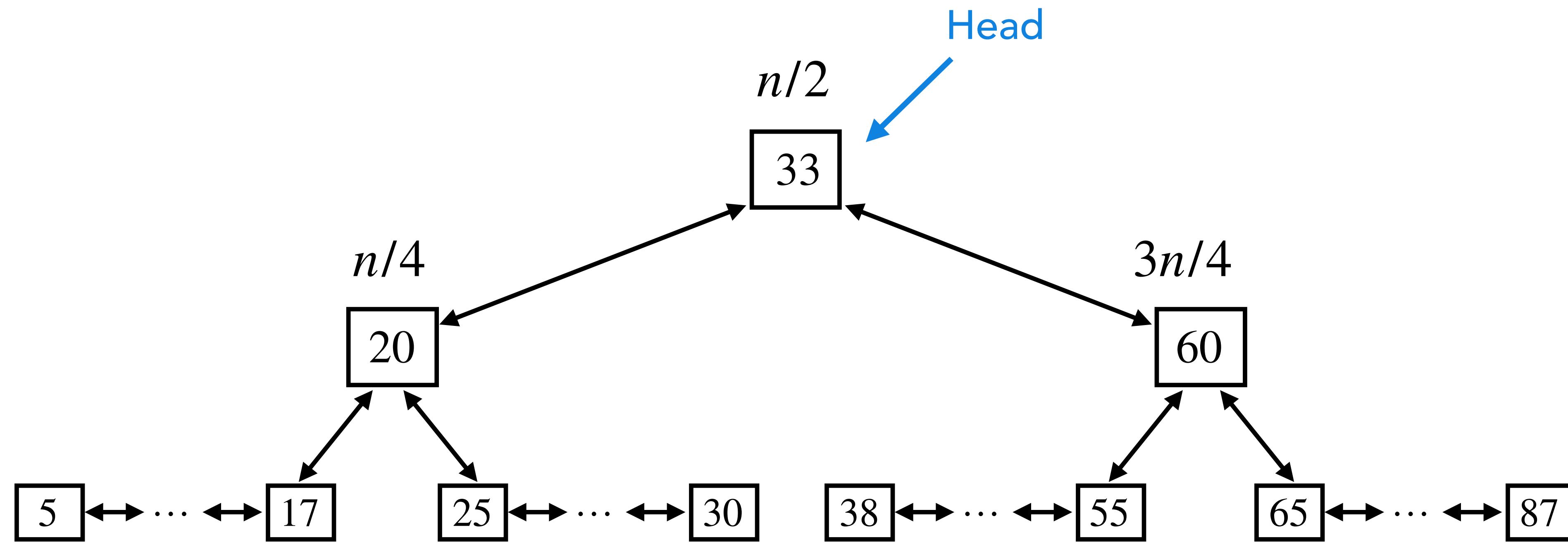


What can be done to find a node with around $n/4$ comparisons?

Reducing Search Time in Linked Lists

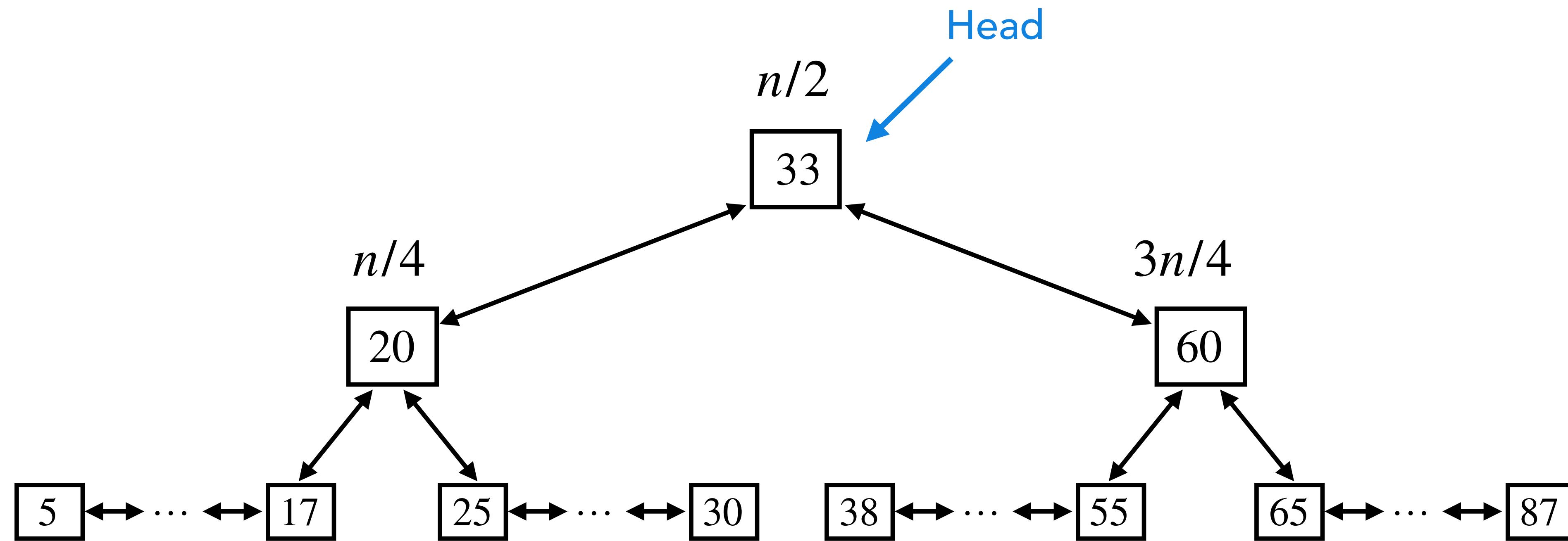


Reducing Search Time in Linked Lists



What will happen if we continue like this?

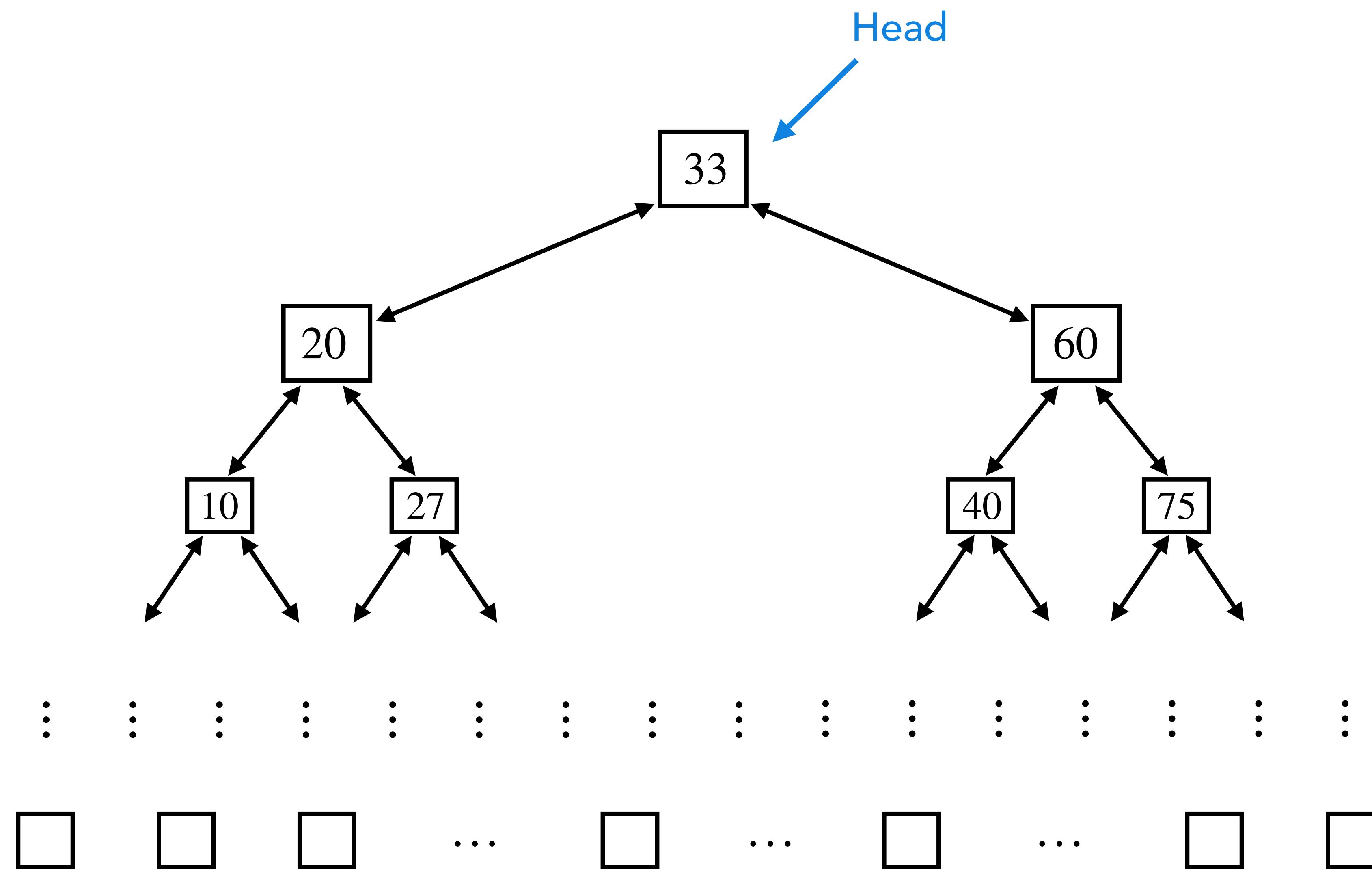
Reducing Search Time in Linked Lists



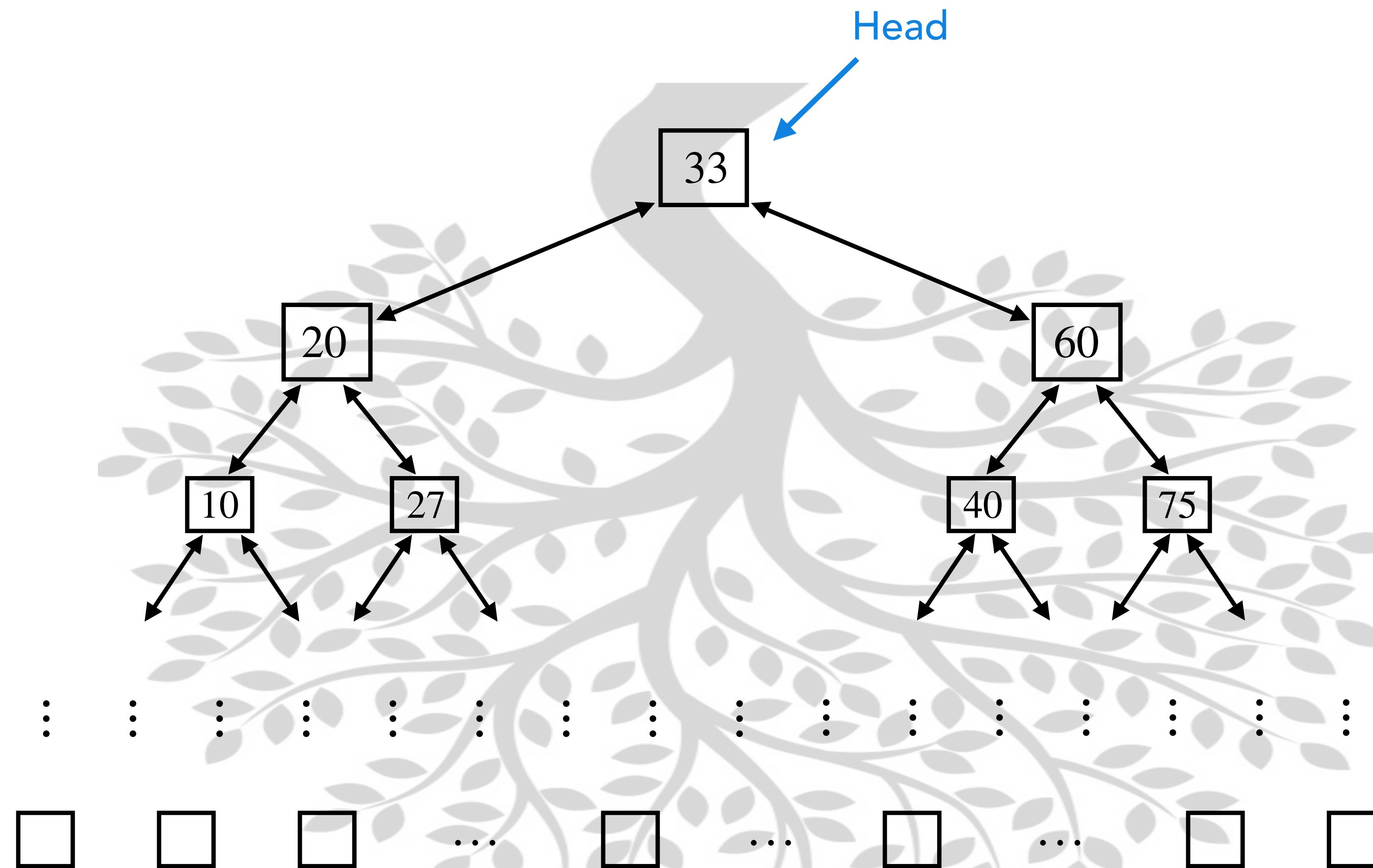
What will happen if we continue like this?

We get a binary search tree

Binary Search Tree

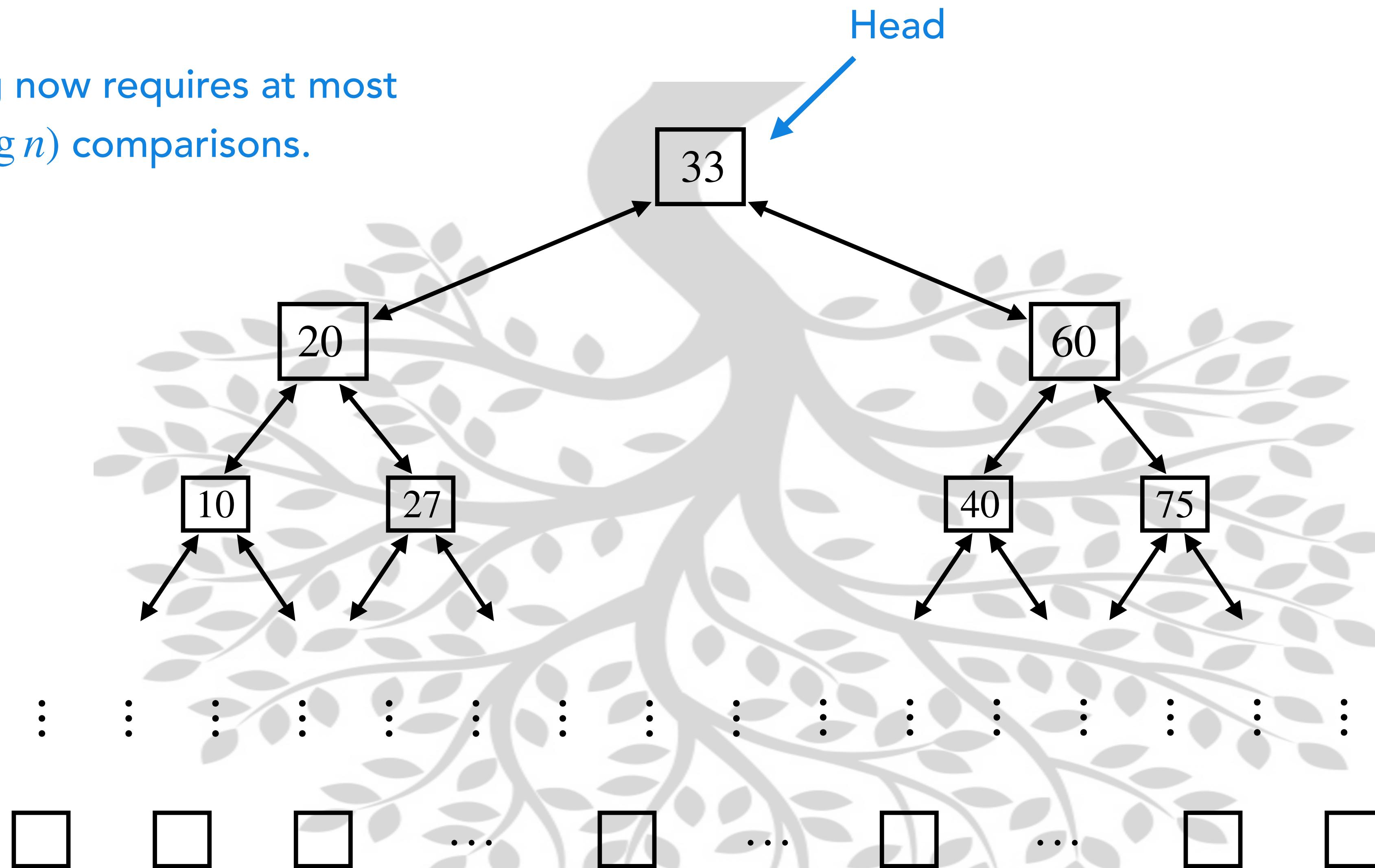


Binary Search Tree



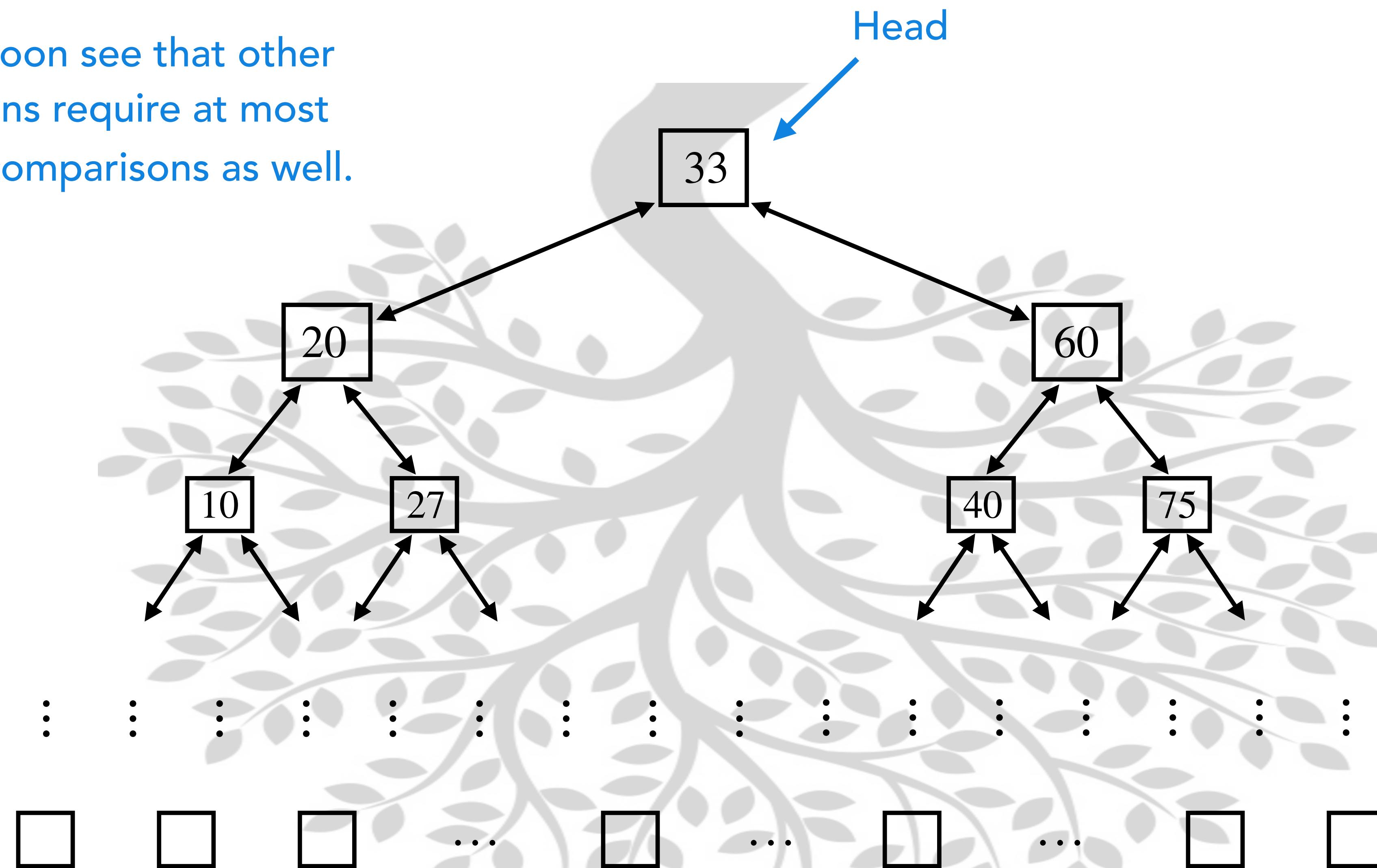
Binary Search Tree

Searching now requires at most
 $\Theta(\log n)$ comparisons.



Binary Search Tree

We will soon see that other operations require at most $\Theta(\log n)$ comparisons as well.



Comparison of Different Data Structures

Comparison of Different Data Structures

	Time required in Linked list implementation	Time required in BST implementation	Time required in Array implementation
Insert	$\Theta(n)$		
Search	$\Theta(n)$		
Delete	$\Theta(1)$		
Min/Max	$\Theta(1), \Theta(n)$		
Succ/Pred	$\Theta(1)$		

Comparison of Different Data Structures

	Time required in Linked list implementation	Time required in BST implementation	Time required in Array implementation
Insert	$\Theta(n)$	$\Theta(h)$	
Search	$\Theta(n)$	$\Theta(h)$	
Delete	$\Theta(1)$	$\Theta(h)$	
Min/Max	$\Theta(1), \Theta(n)$	$\Theta(h)$	
Succ/Pred	$\Theta(1)$	$\Theta(h)$	

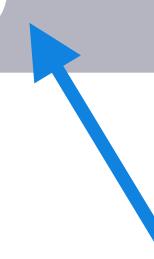
Comparison of Different Data Structures

	Time required in Linked list implementation	Time required in BST implementation	Time required in Array implementation
Insert	$\Theta(n)$	$\Theta(h)$	
Search	$\Theta(n)$	$\Theta(h)$	
Delete	$\Theta(1)$	$\Theta(h)$	
Min/Max	$\Theta(1), \Theta(n)$	$\Theta(h)$	
Succ/Pred	$\Theta(1)$	$\Theta(h)$	

h is the height of the tree

Comparison of Different Data Structures

	Time required in Linked list implementation	Time required in BST implementation	Time required in Array implementation
Insert	$\Theta(n)$	$\Theta(h)$??
Search	$\Theta(n)$	$\Theta(h)$??
Delete	$\Theta(1)$	$\Theta(h)$??
Min/Max	$\Theta(1), \Theta(n)$	$\Theta(h)$??
Succ/Pred	$\Theta(1)$	$\Theta(h)$??



h is the height of the tree

Comparison of Different Data Structures

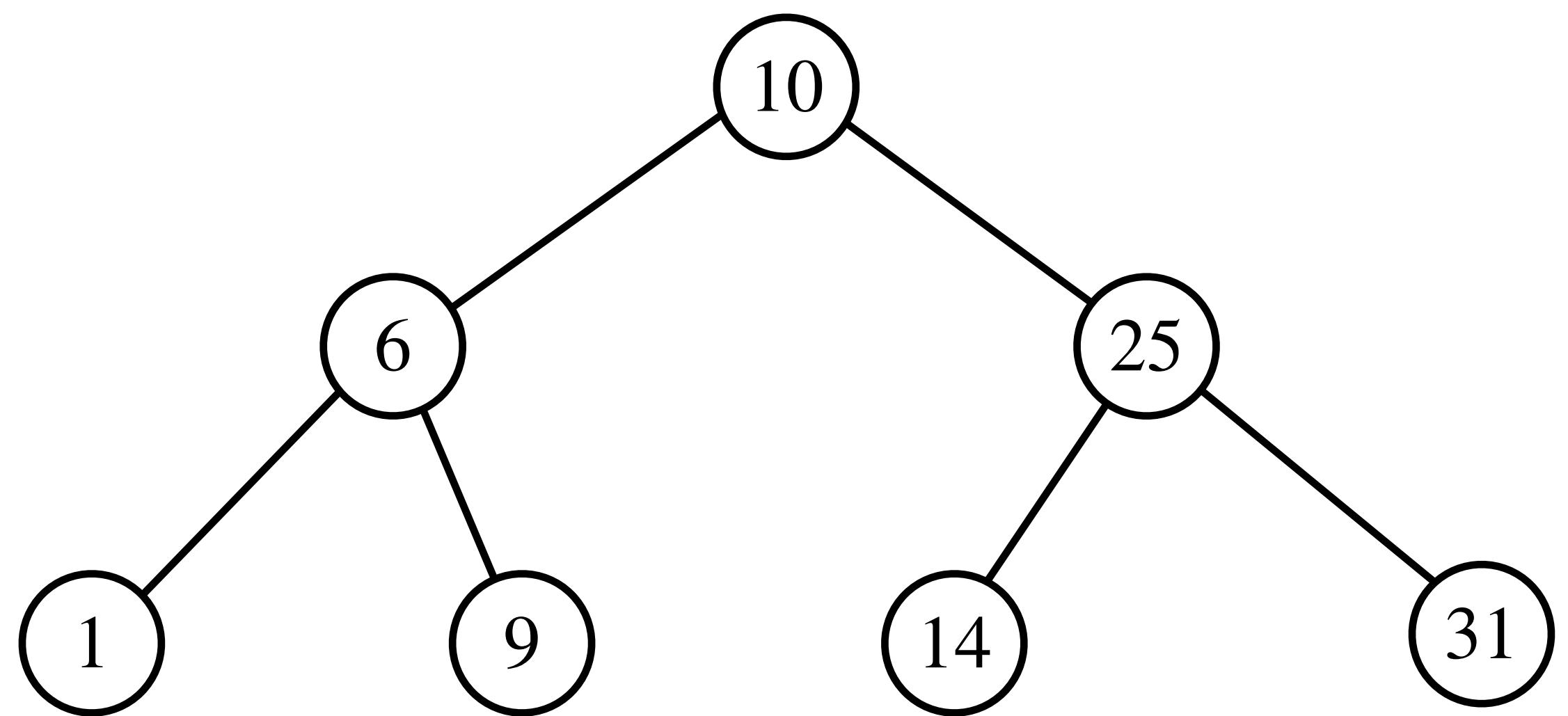
	Time required in Linked list implementation	Time required in BST implementation	Time required in Array implementation
Insert	$\Theta(n)$	$\Theta(h)$??
Search	$\Theta(n)$	$\Theta(h)$??
Delete	$\Theta(1)$	$\Theta(h)$??
Min/Max	$\Theta(1), \Theta(n)$	$\Theta(h)$??
Succ/Pred	$\Theta(1)$	$\Theta(h)$??

h is the height of the tree

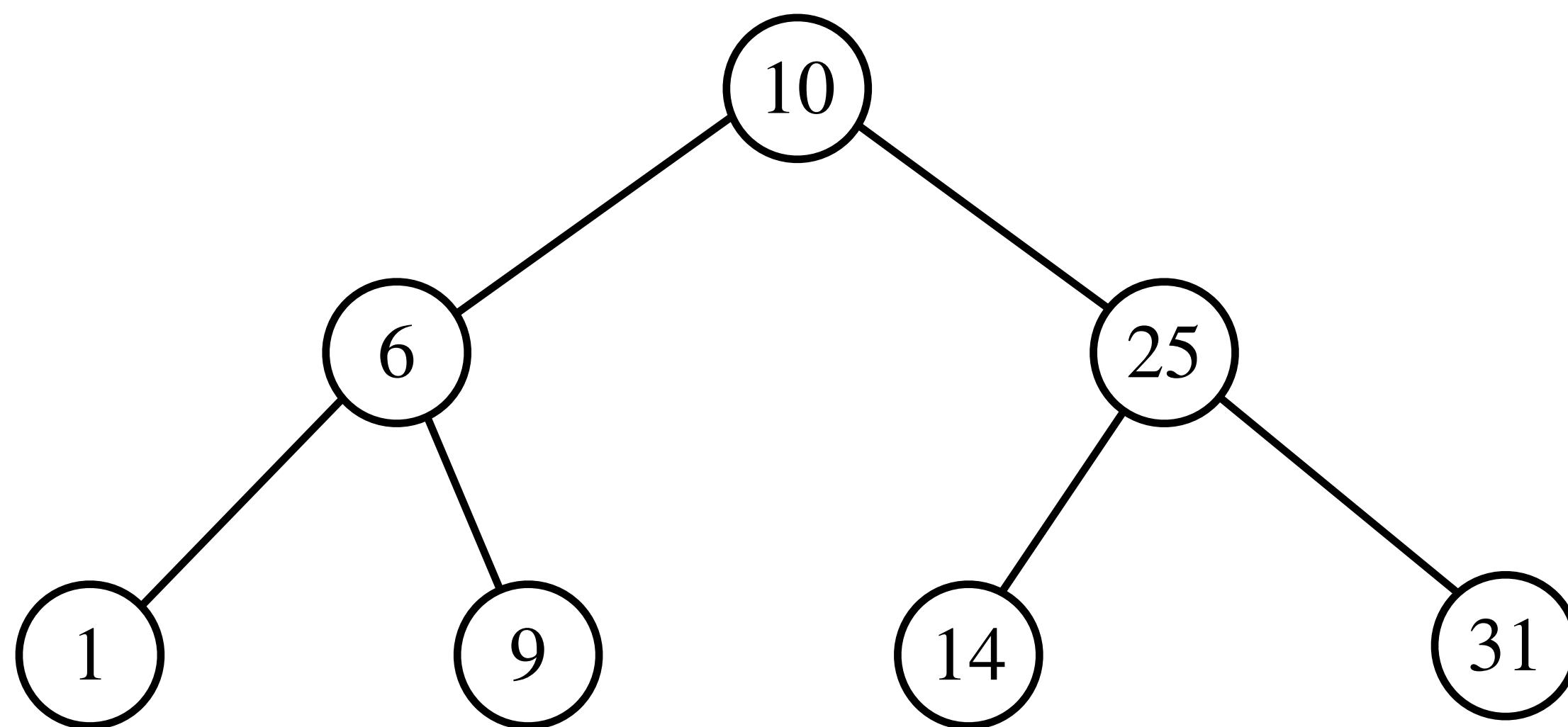
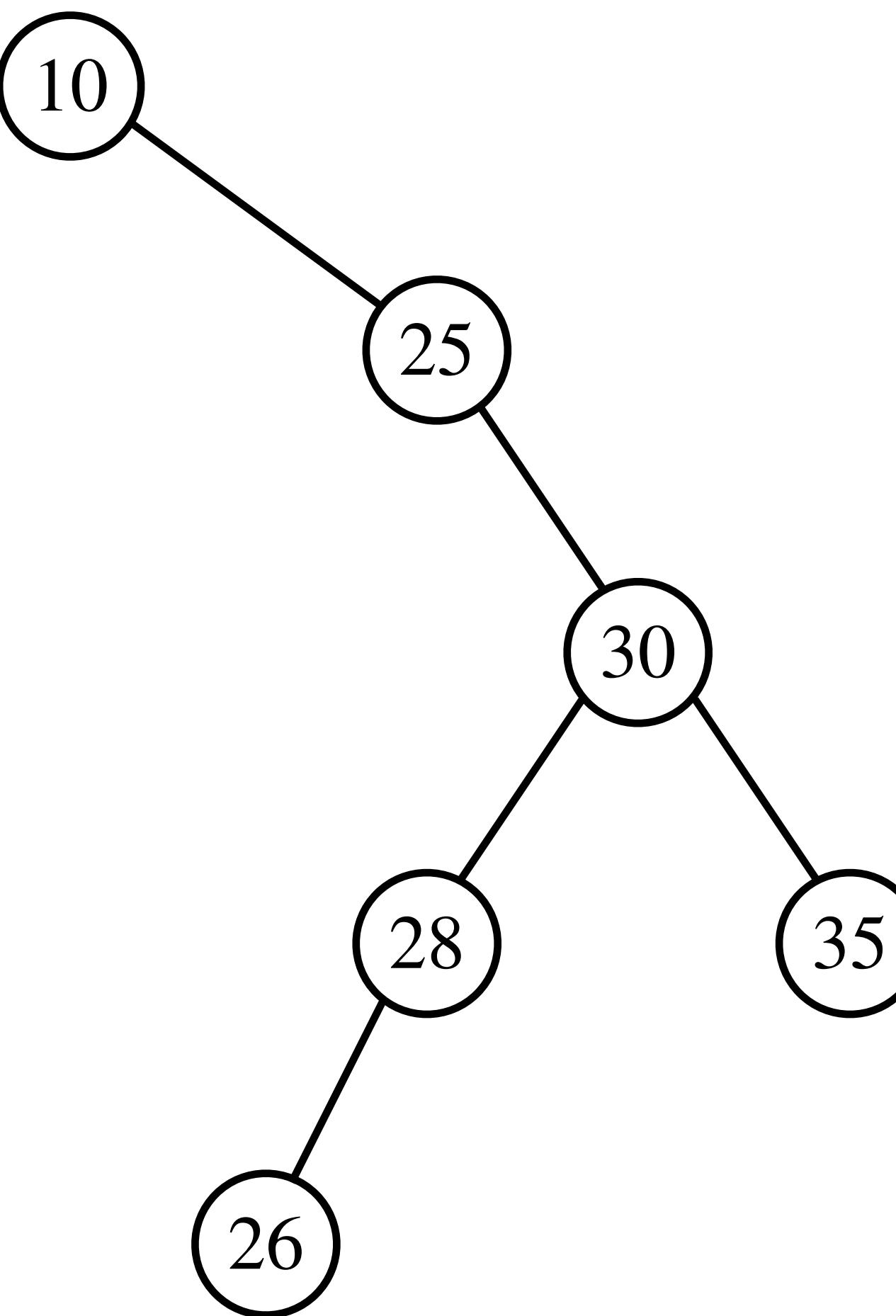
DIY

How does a BST look like?

How does a BST look like?



How does a BST look like?



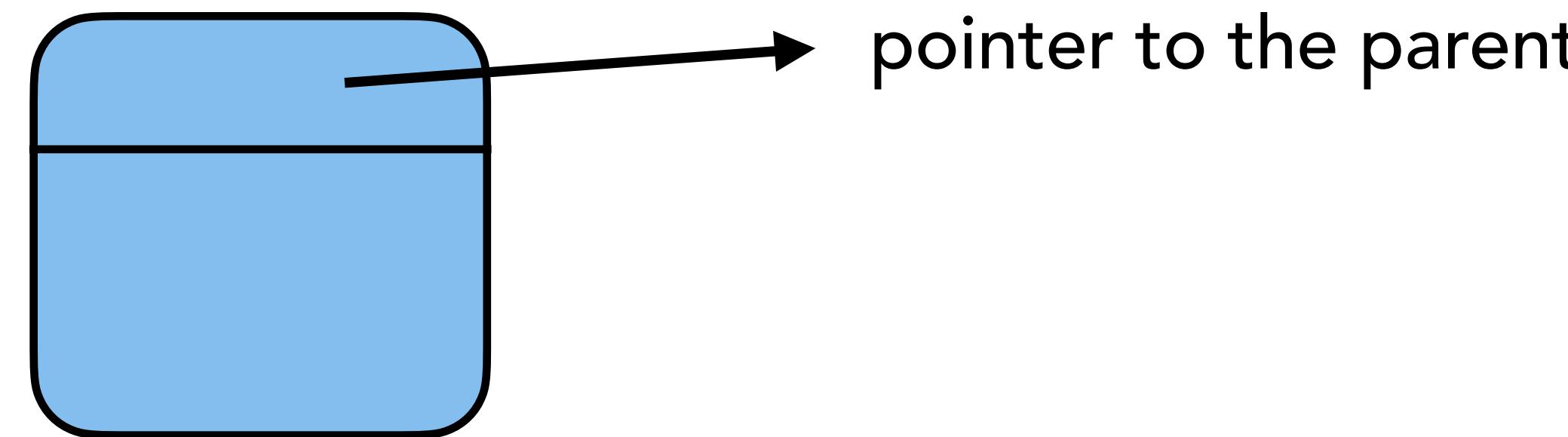
What is a BST?

What is a BST?

- A binary search tree is a collection of **nodes** of the following type:

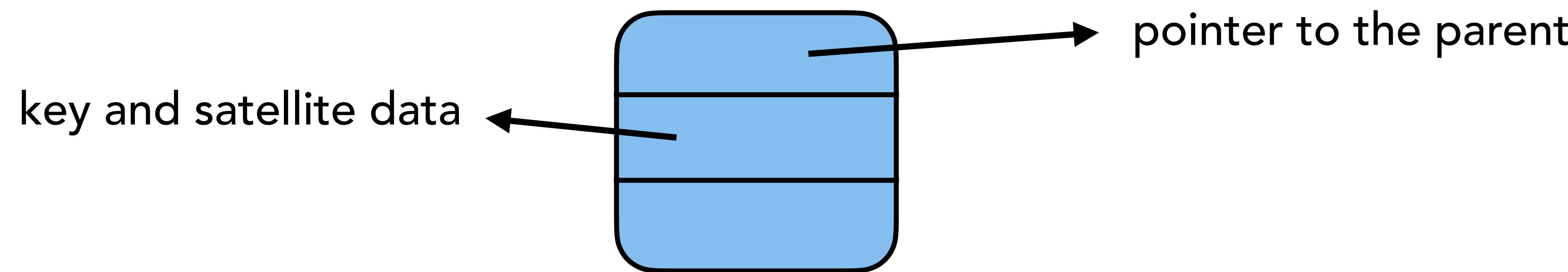
What is a BST?

- A binary search tree is a collection of **nodes** of the following type:



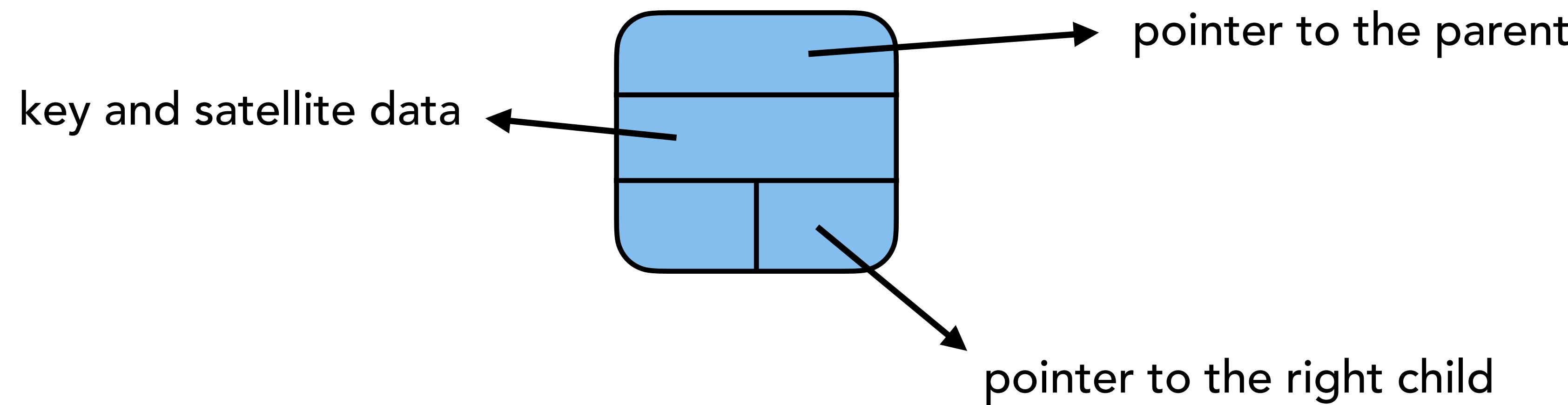
What is a BST?

- A binary search tree is a collection of **nodes** of the following type:



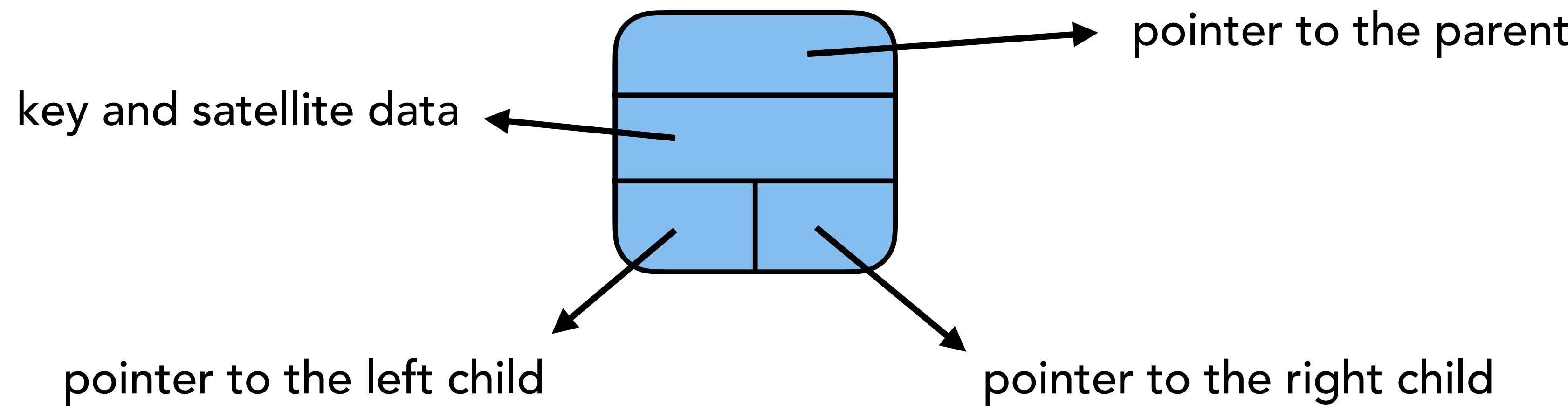
What is a BST?

- A binary search tree is a collection of **nodes** of the following type:



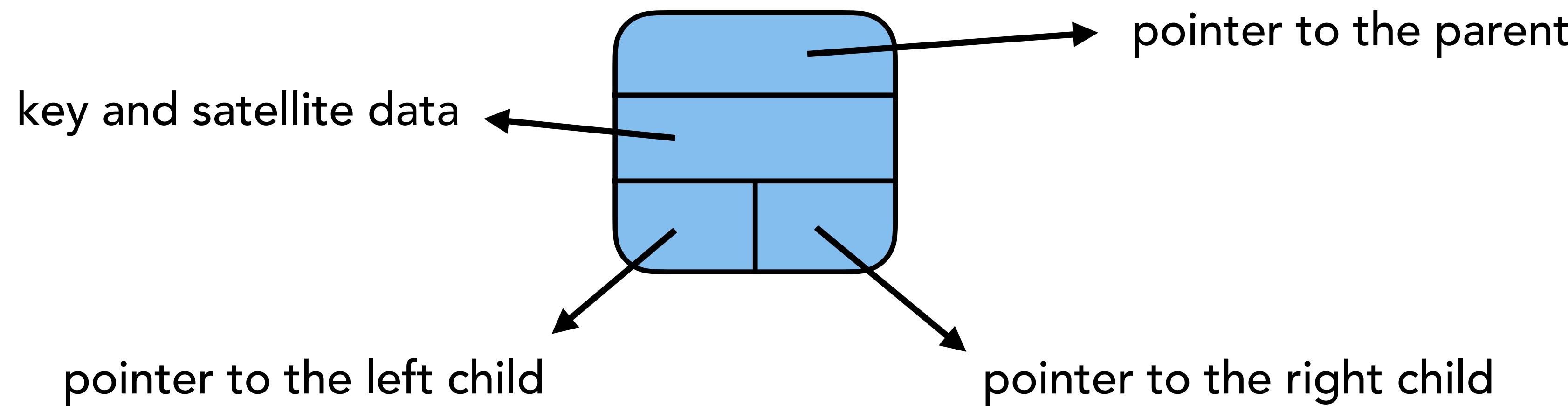
What is a BST?

- A binary search tree is a collection of **nodes** of the following type:



What is a BST?

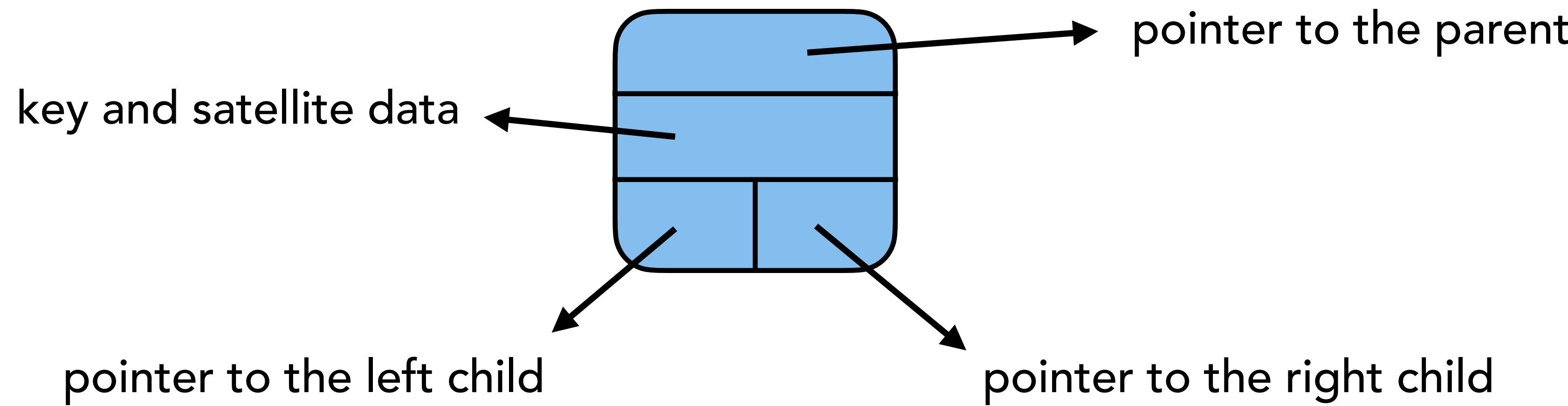
- A binary search tree is a collection of **nodes** of the following type:



- Every tree has a **root**. It's the only node without the parent.

What is a BST?

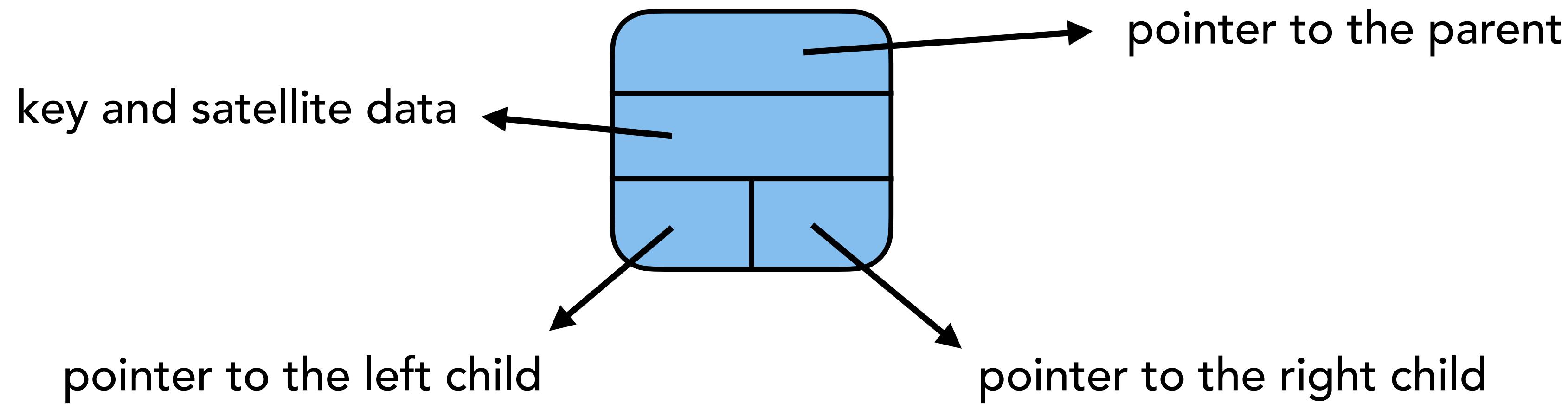
- A binary search tree is a collection of **nodes** of the following type:



- Every tree has a **root**. It's the only node without the parent.
- There is a **path** from every node to the **root**.

What is a BST?

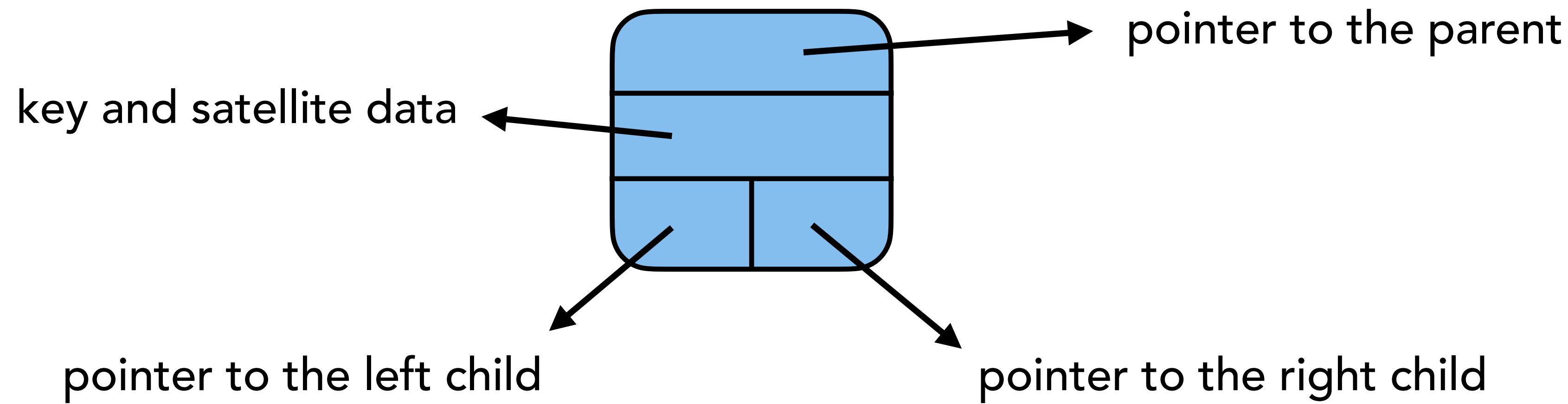
- A binary search tree is a collection of **nodes** of the following type:



- Every tree has a **root**. It's the only node without the parent.
- There is a **path** from every node to the **root**.
- **BST property**:

What is a BST?

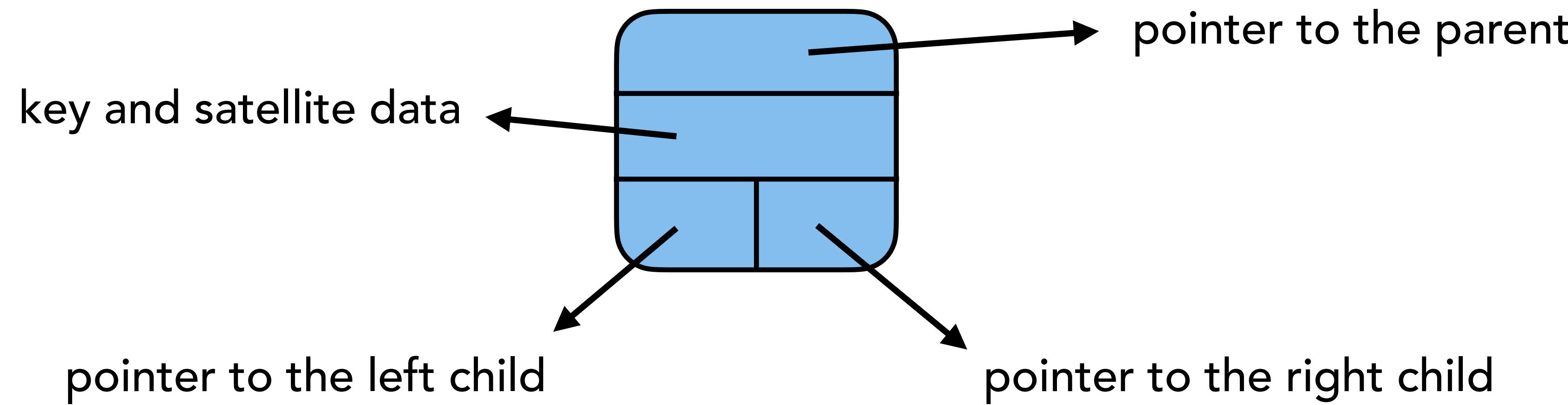
- A binary search tree is a collection of **nodes** of the following type:



- Every tree has a **root**. It's the only node without the parent.
- There is a **path** from every node to the **root**.
- **BST property**: Let x be a node in a BST

What is a BST?

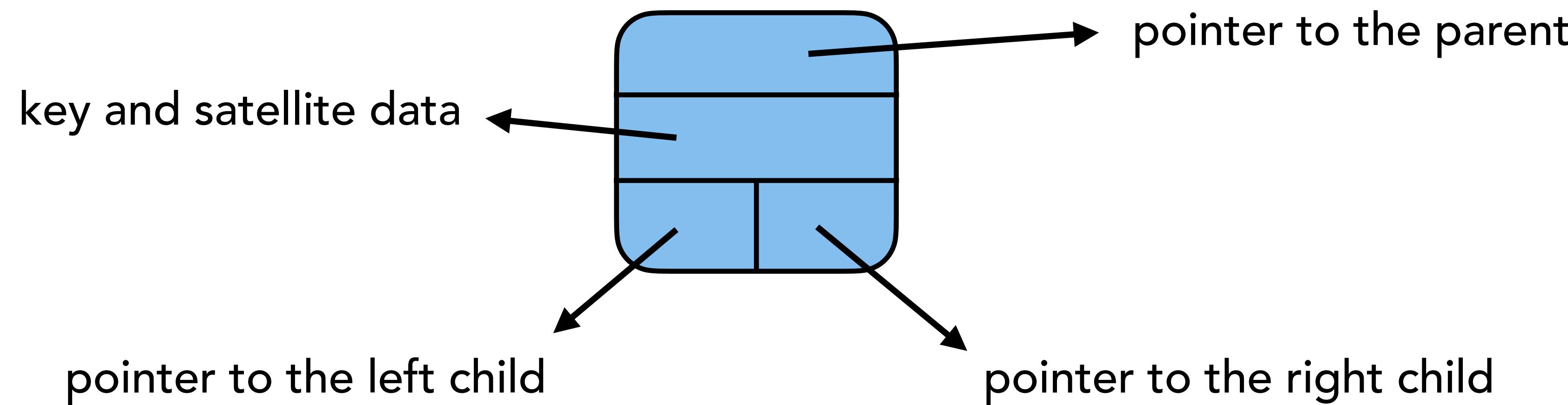
- A binary search tree is a collection of **nodes** of the following type:



- Every tree has a **root**. It's the only node without the parent.
- There is a **path** from every node to the **root**.
- **BST property**: Let x be a node in a BST and y, z be the nodes in its left, right subtree, resp.

What is a BST?

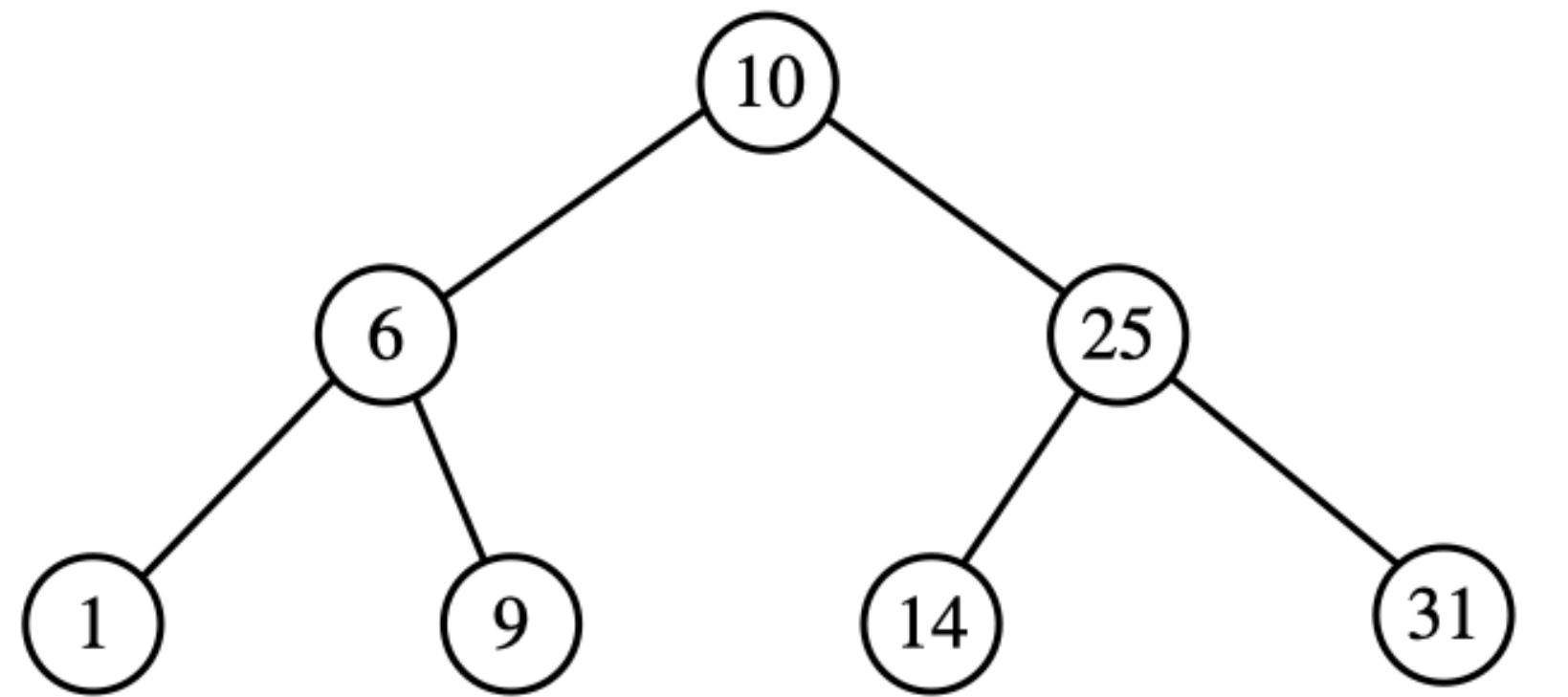
- A binary search tree is a collection of **nodes** of the following type:



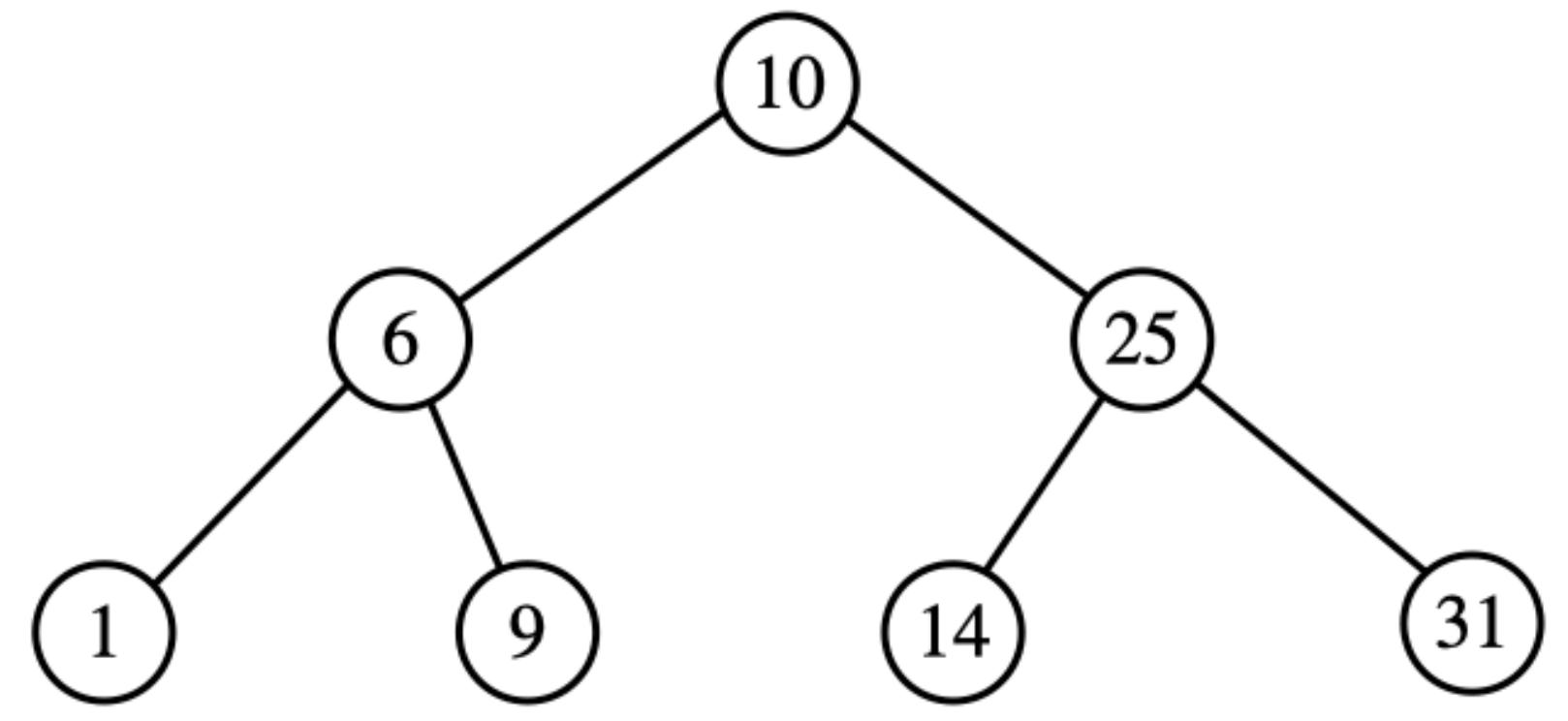
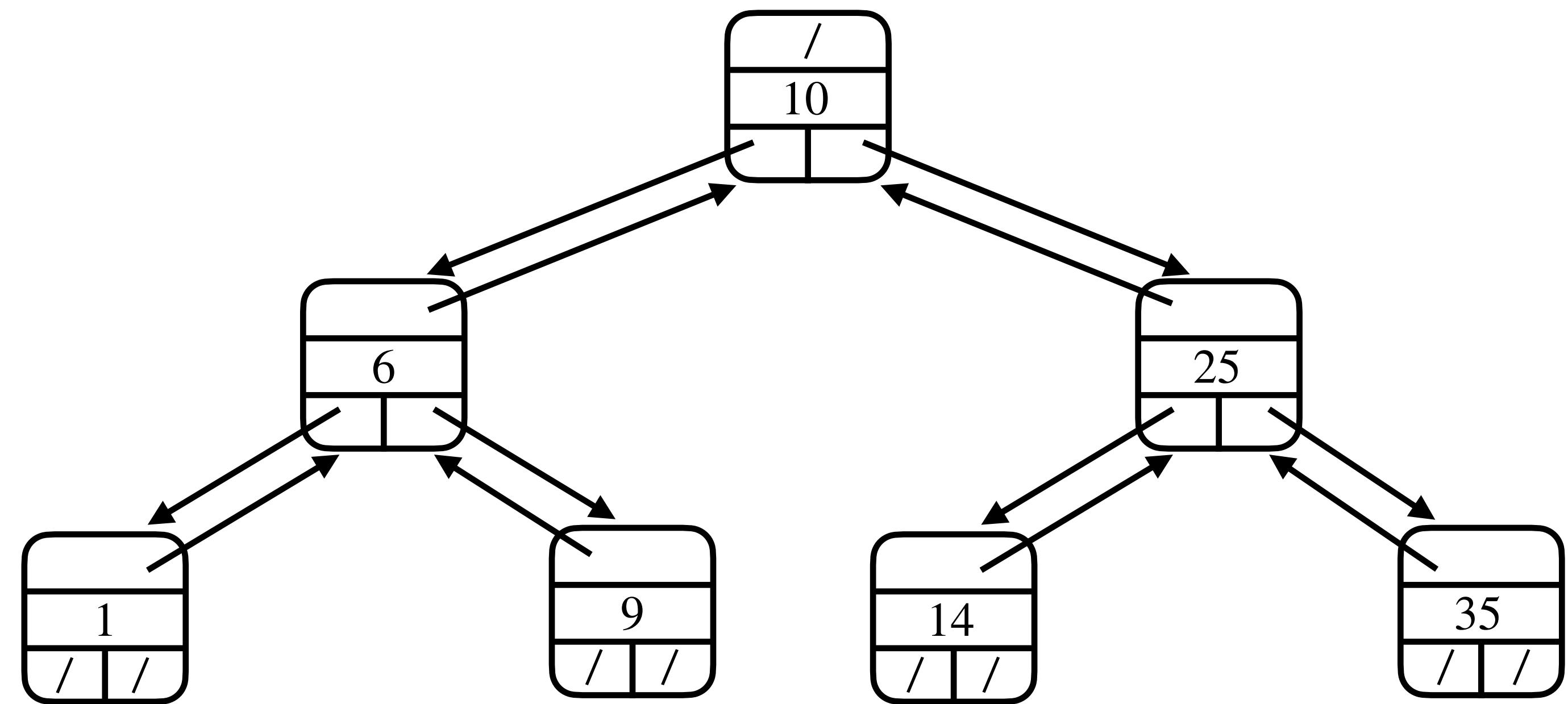
- Every tree has a **root**. It's the only node without the parent.
- There is a **path** from every node to the **root**.
- **BST property**: Let x be a node in a BST and y, z be the nodes in its left, right subtree, resp. Then, $y.key \leq x.key \leq z.key$.

What is a BST?

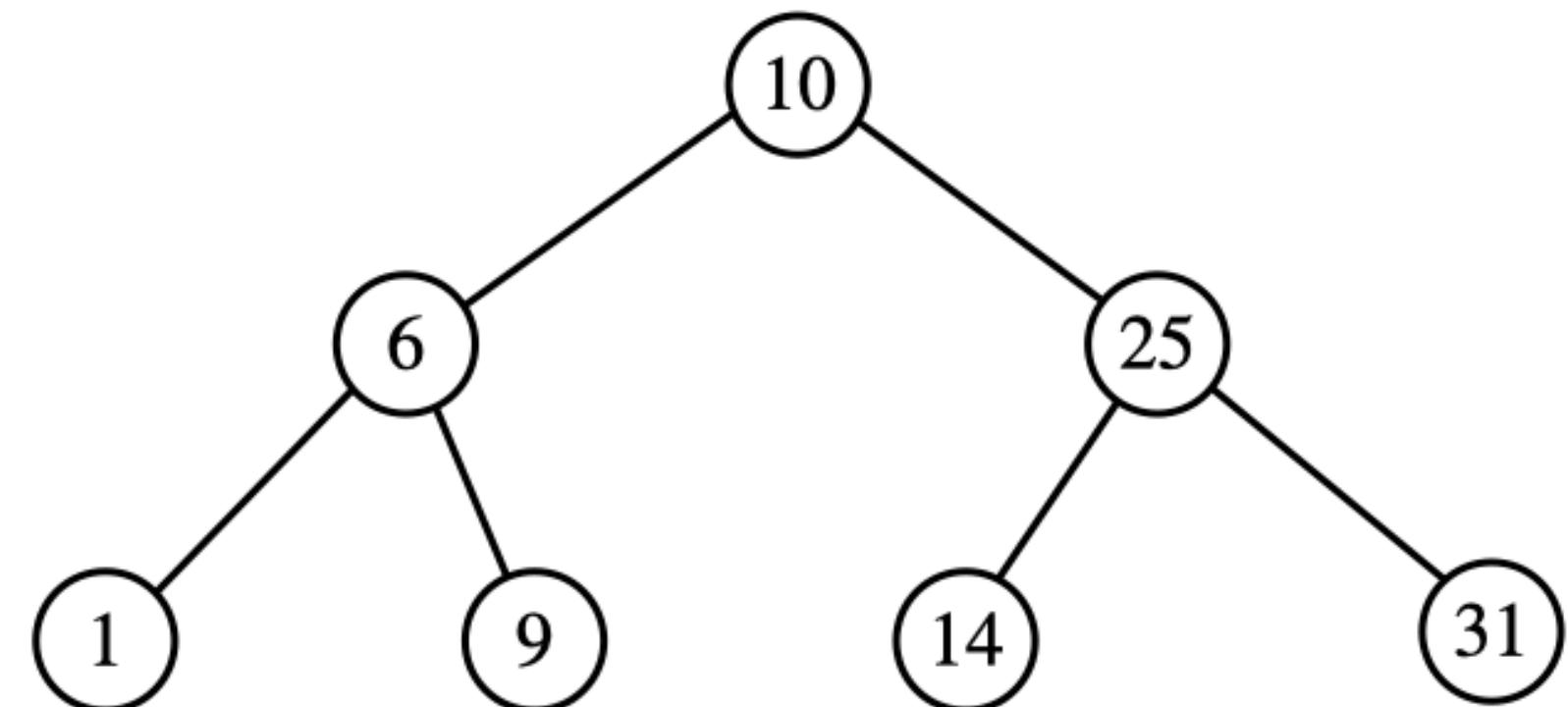
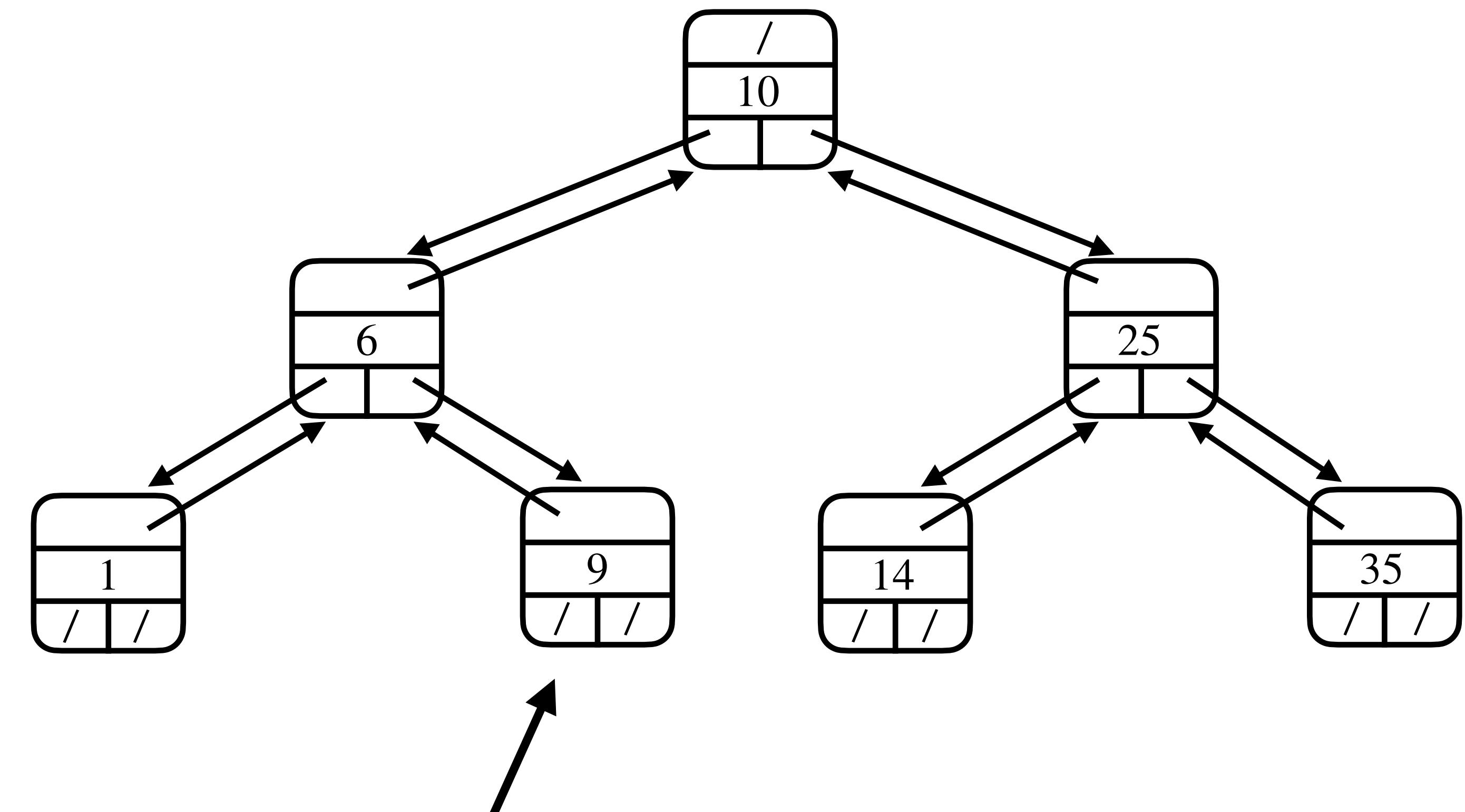
What is a BST?



What is a BST?



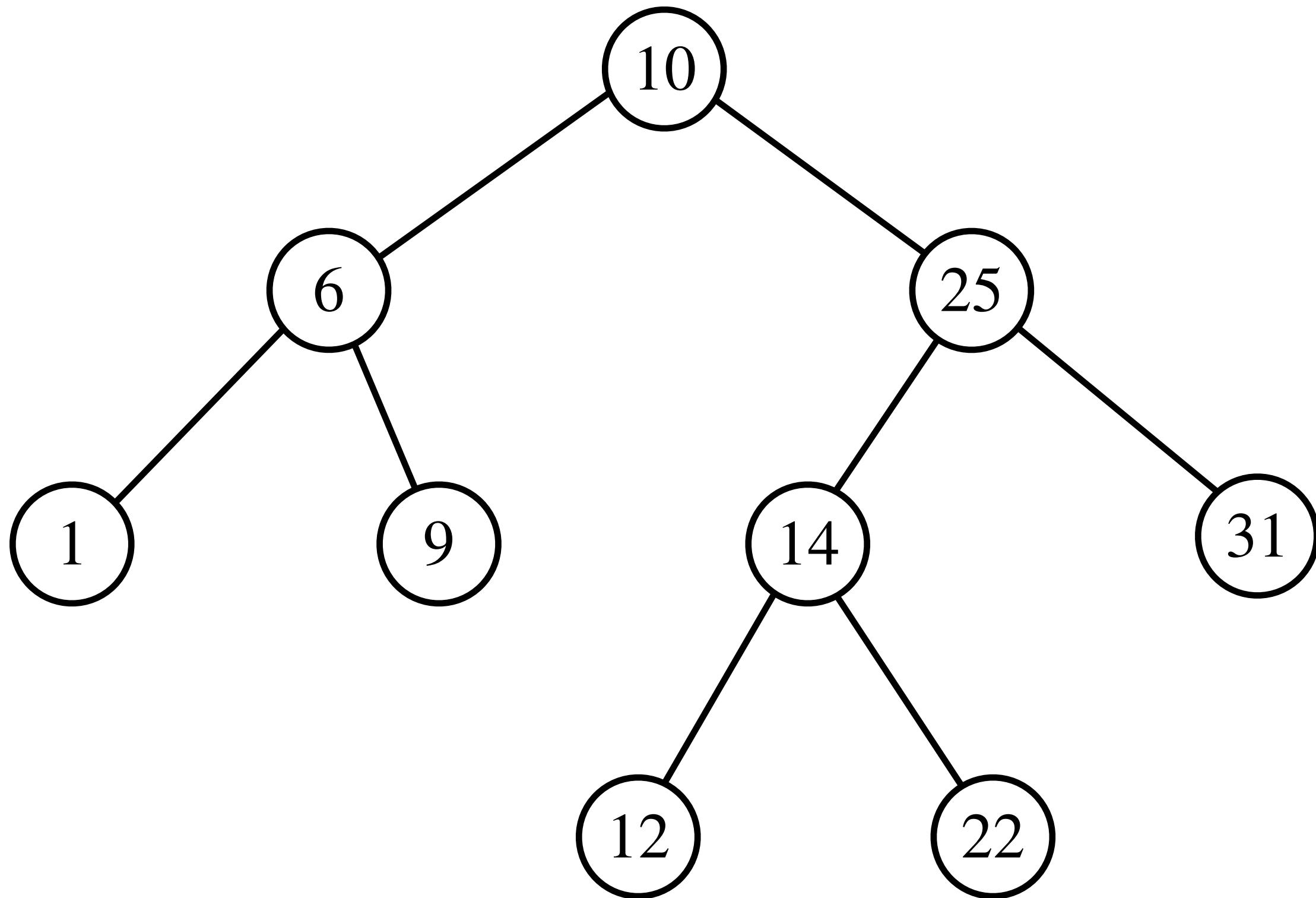
What is a BST?



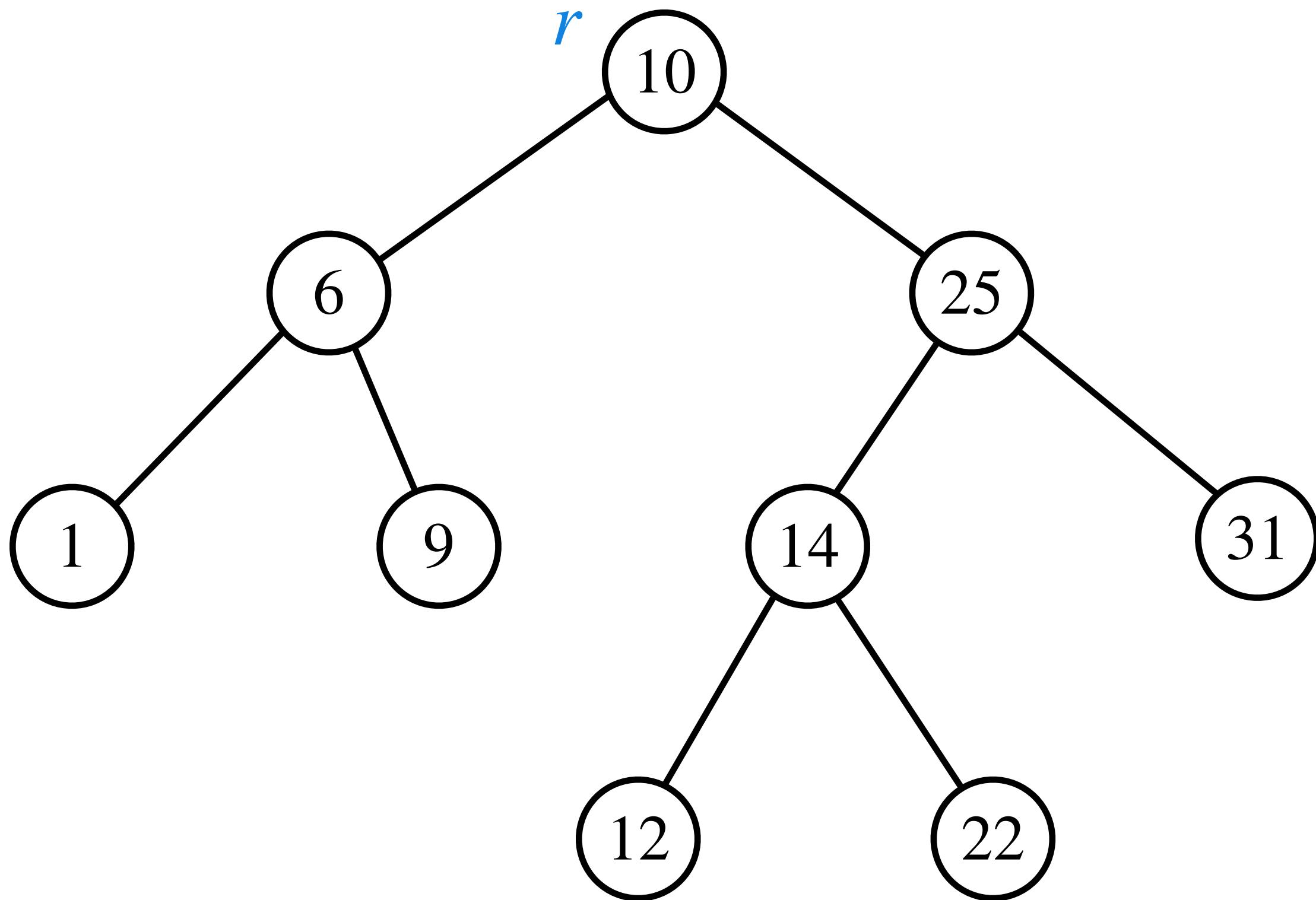
NIL values in the absence of parent, left or right child.

BST: Basic Terminology

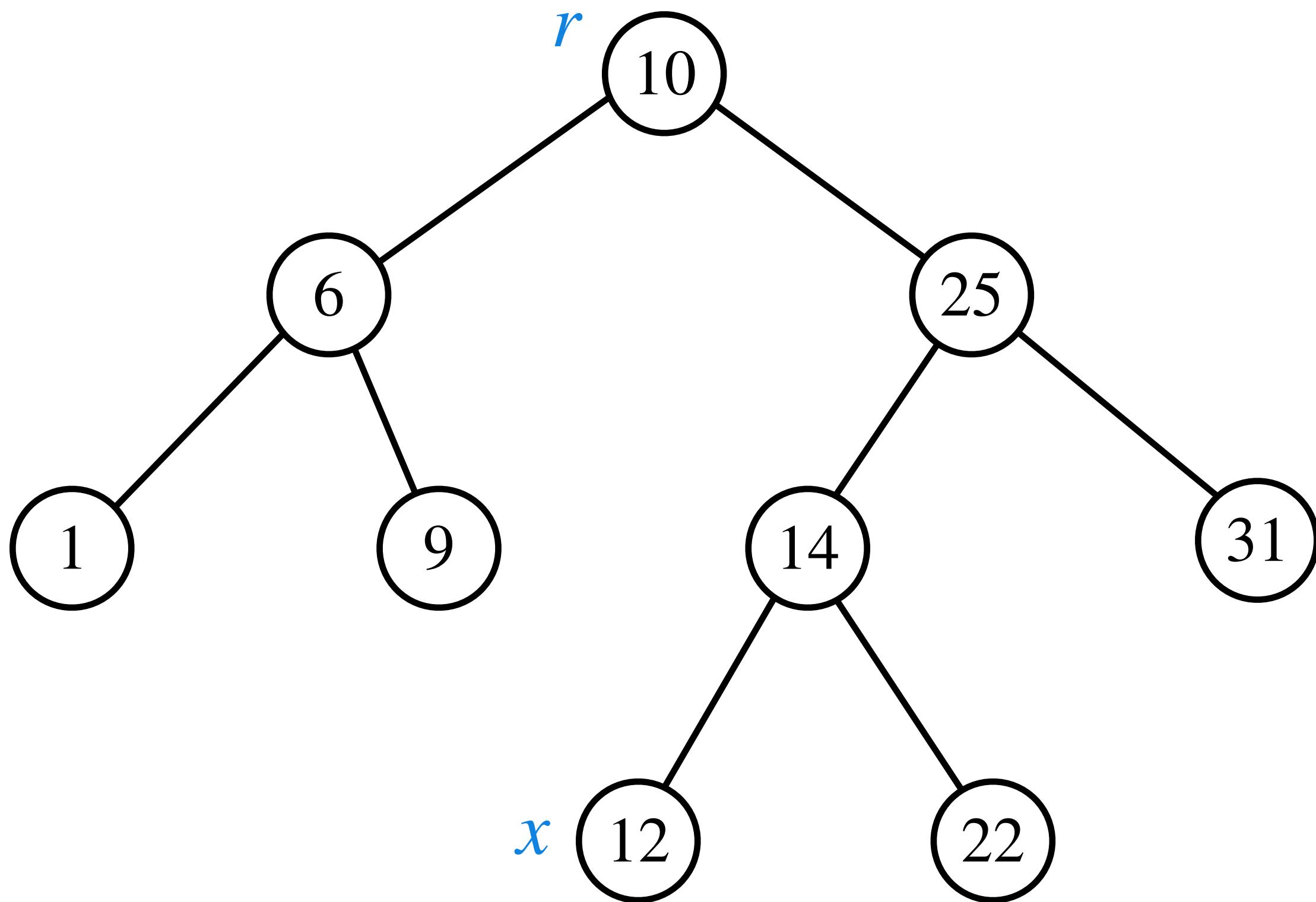
BST: Basic Terminology



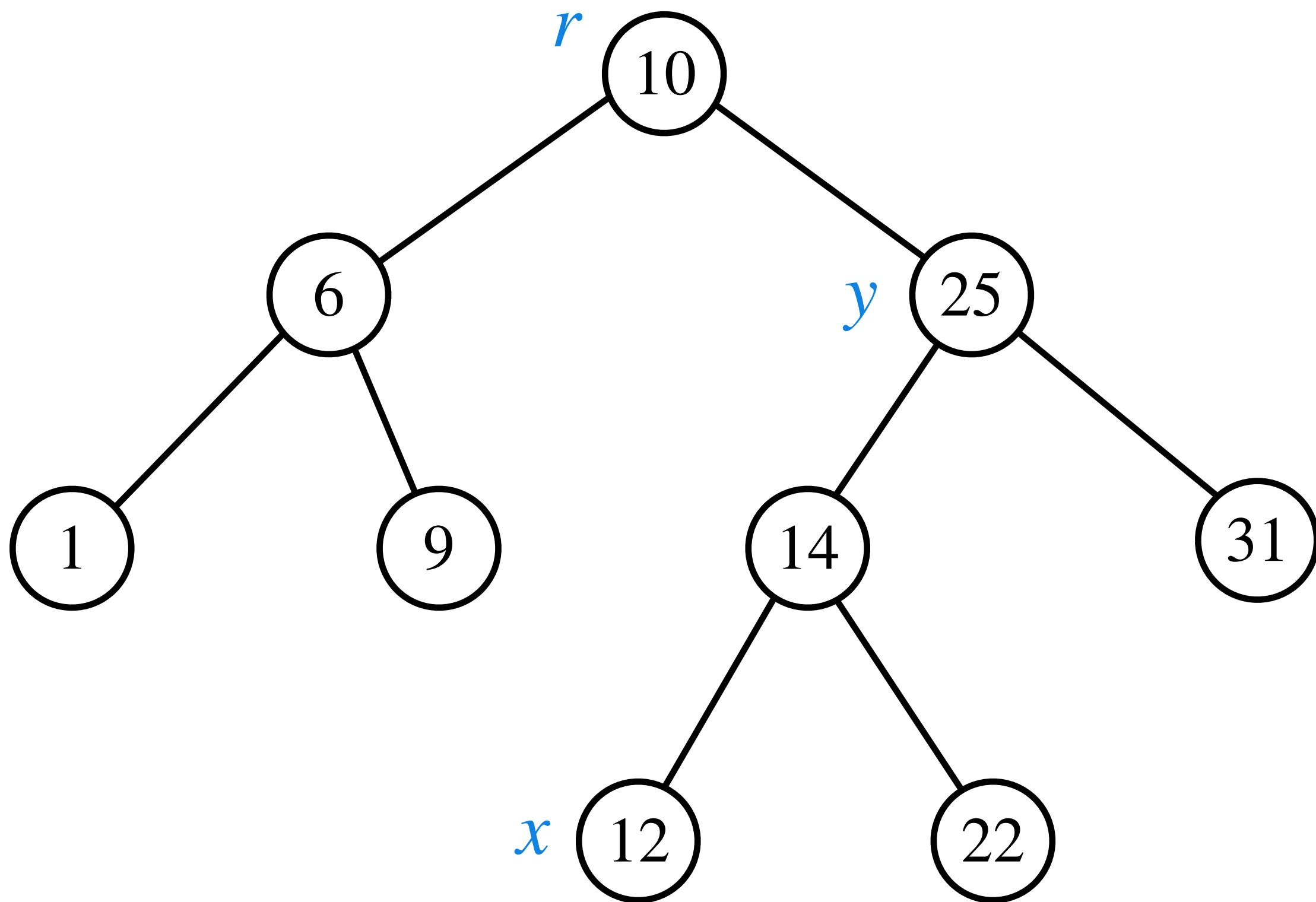
BST: Basic Terminology



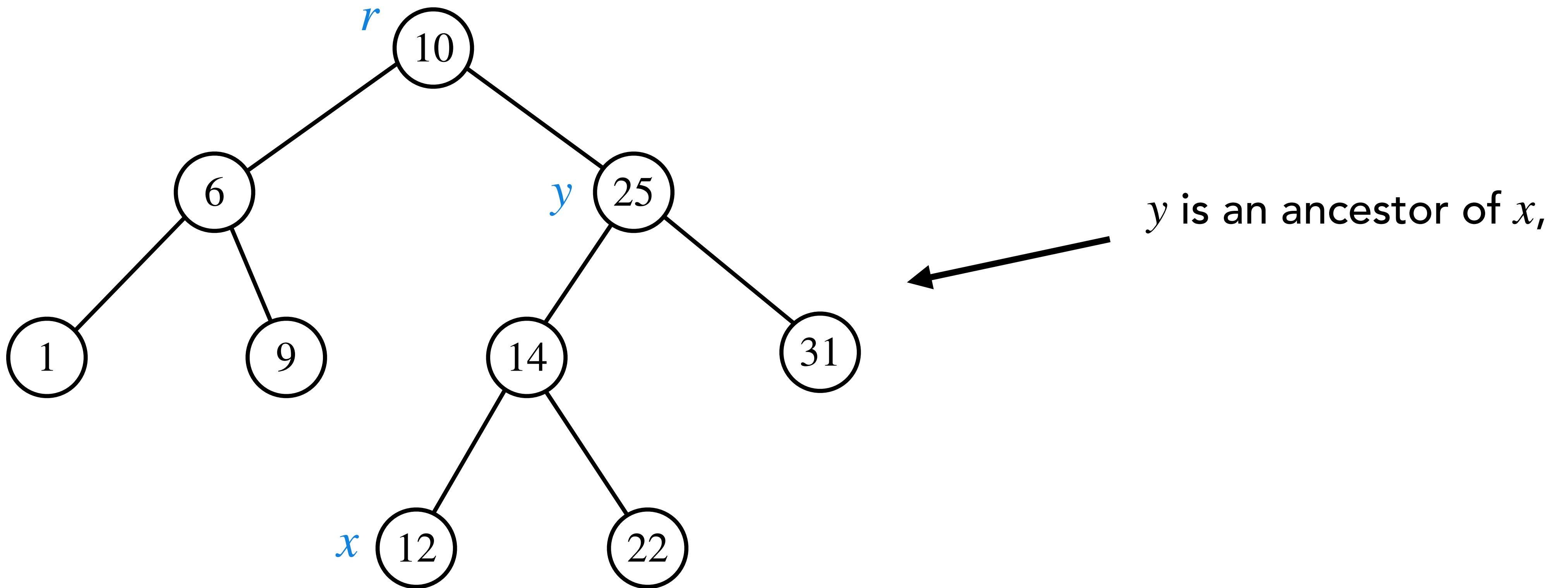
BST: Basic Terminology



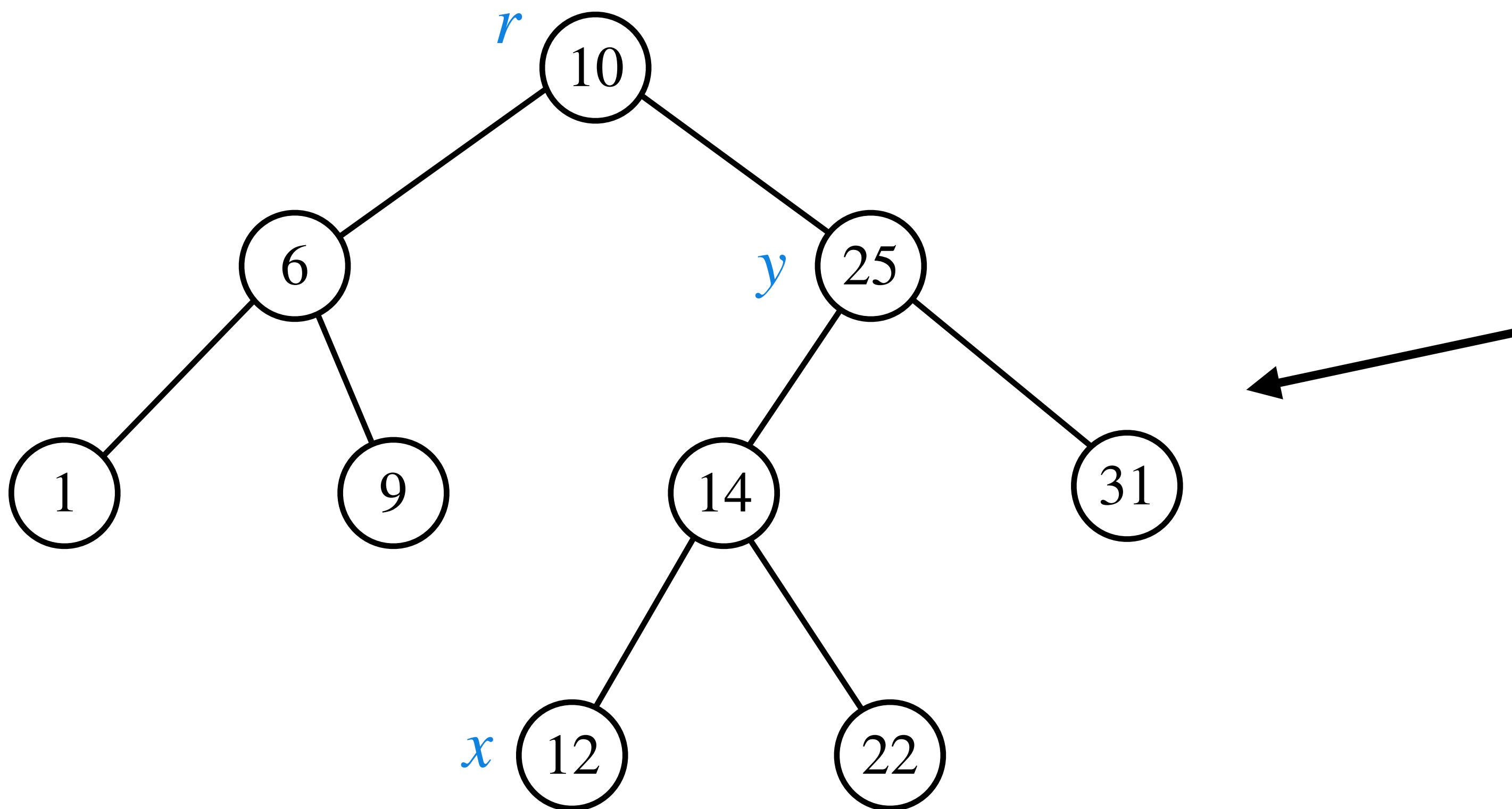
BST: Basic Terminology



BST: Basic Terminology



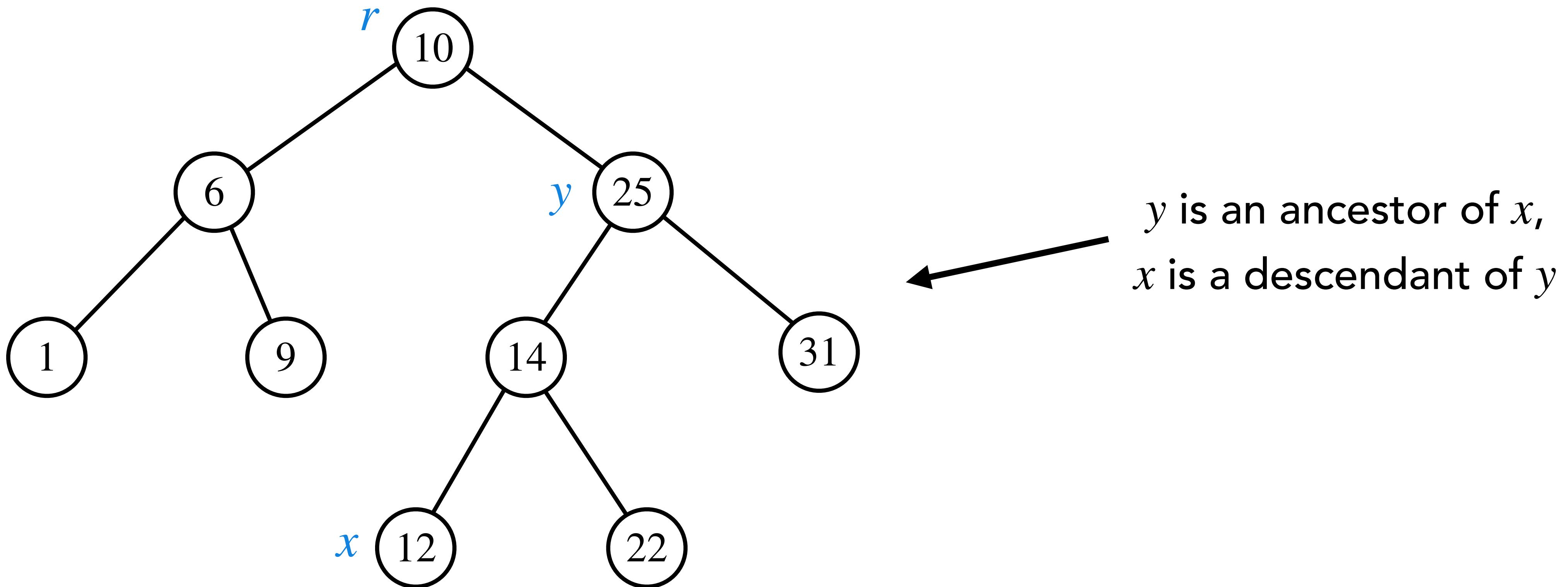
BST: Basic Terminology



y is an ancestor of x ,
 x is a descendant of y

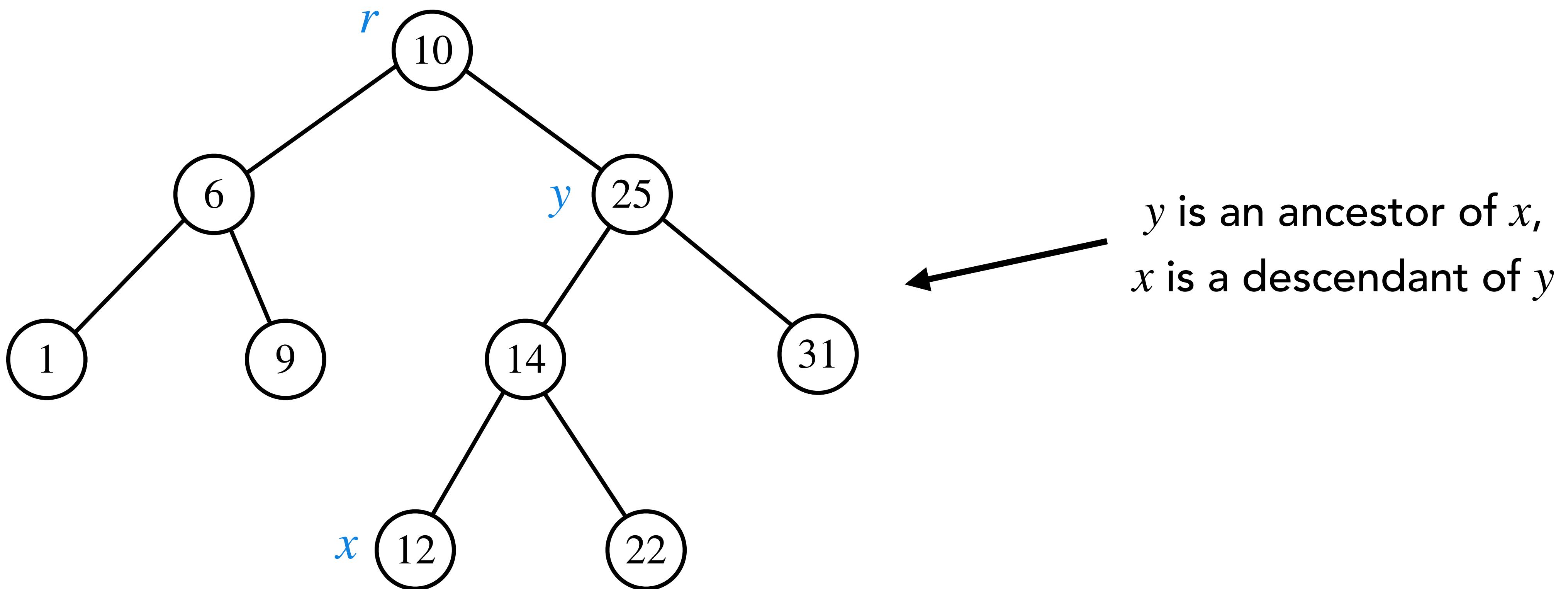
BST: Basic Terminology

Defn: Let x be a node in a tree T with root r .



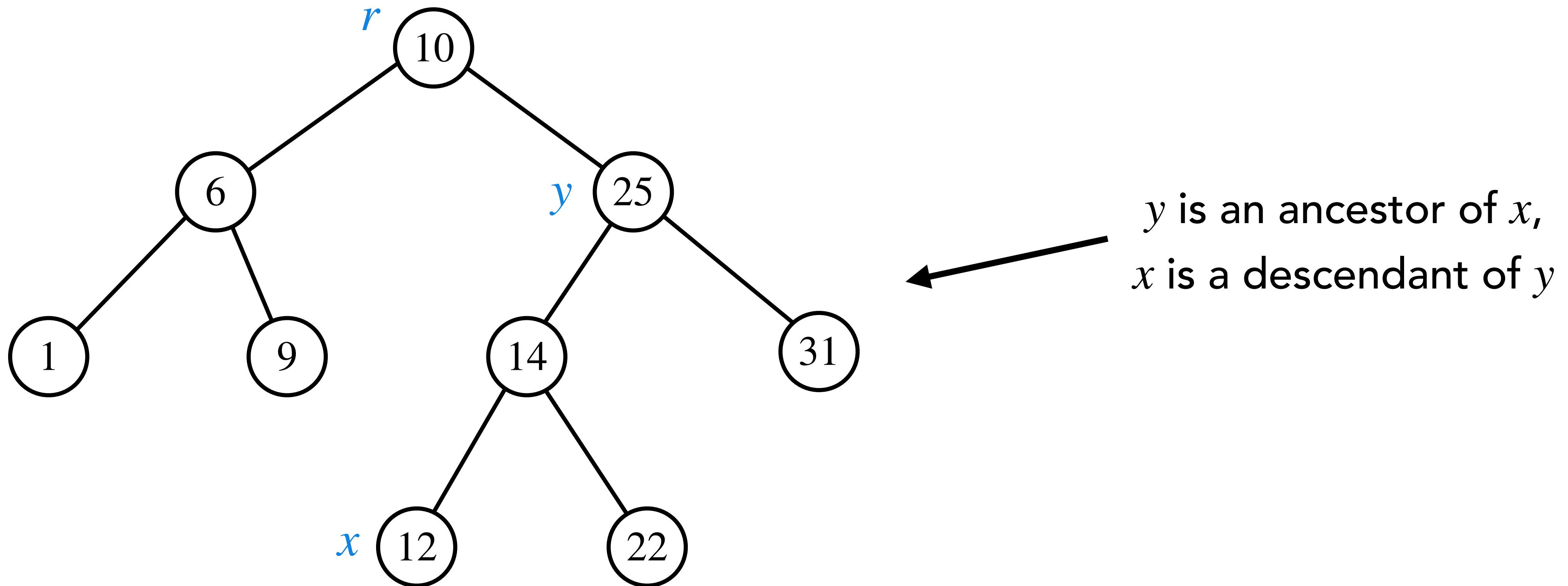
BST: Basic Terminology

Defn: Let x be a node in a tree T with root r . Then any node y on the unique path from r to x is



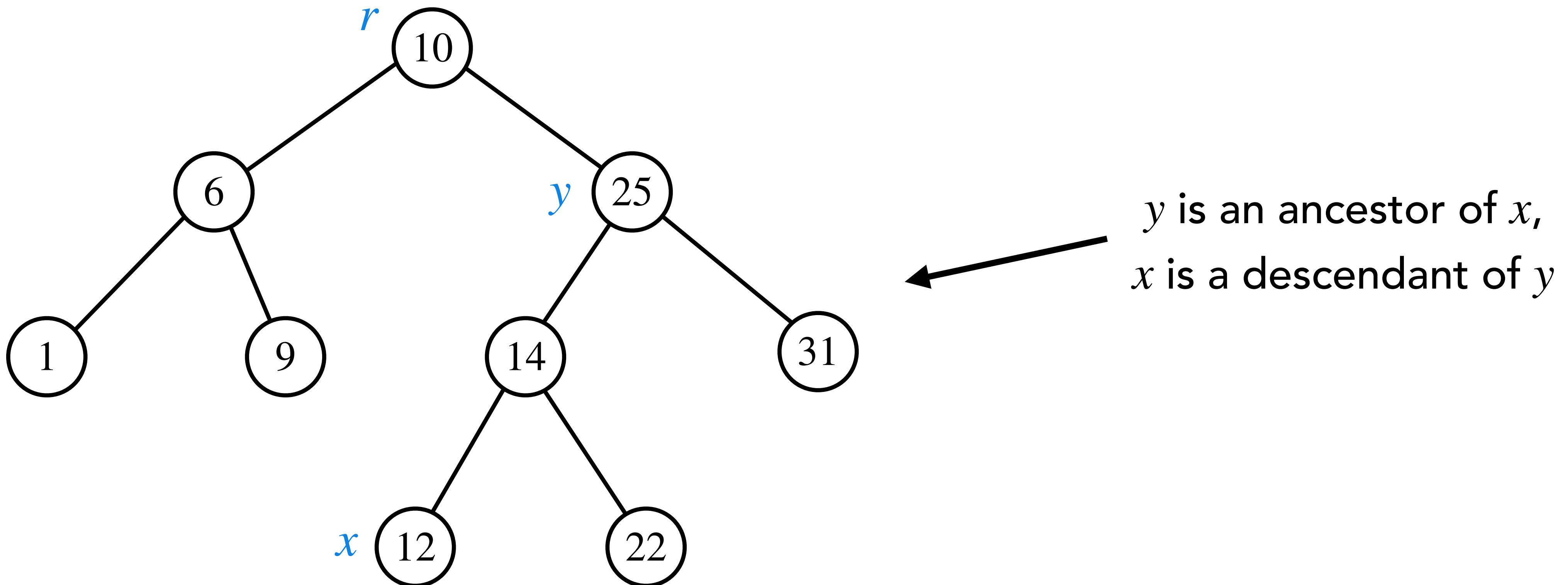
BST: Basic Terminology

Defn: Let x be a node in a tree T with root r . Then any node y on the unique path from r to x is called an **ancestor** of x



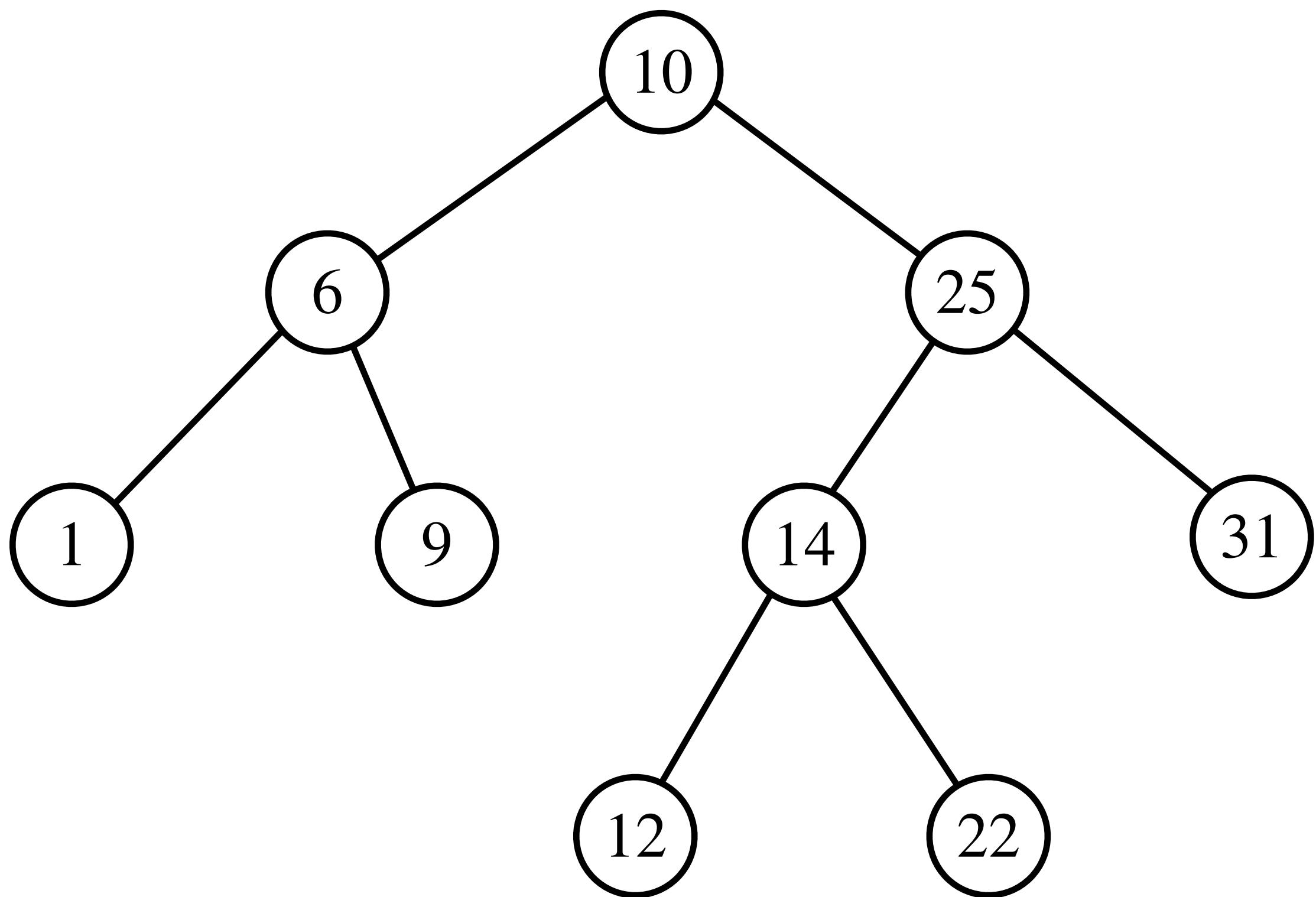
BST: Basic Terminology

Defn: Let x be a node in a tree T with root r . Then any node y on the unique path from r to x is called an **ancestor** of x and x is called a **descendant** of y .

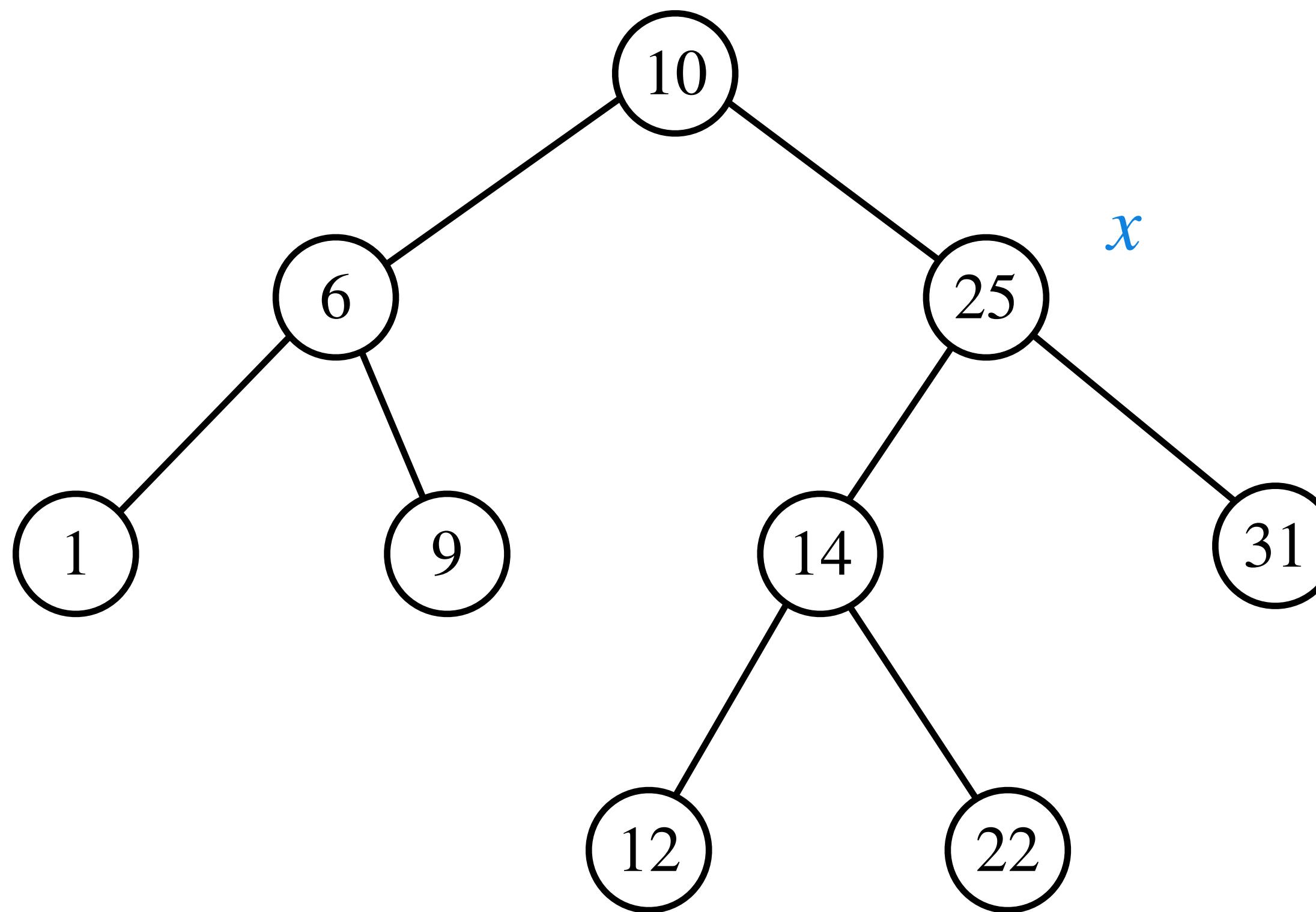


BST: Basic Terminology

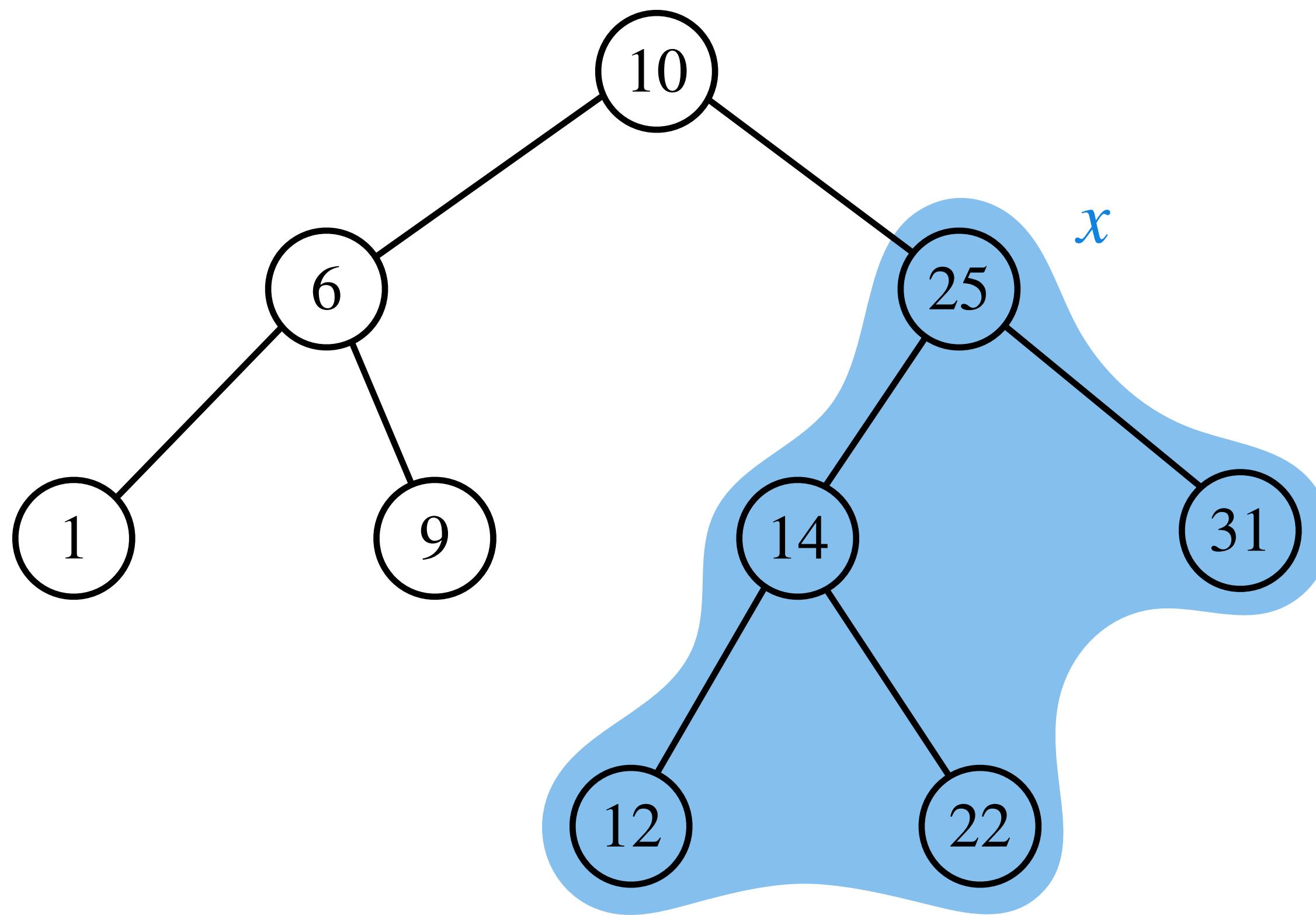
BST: Basic Terminology



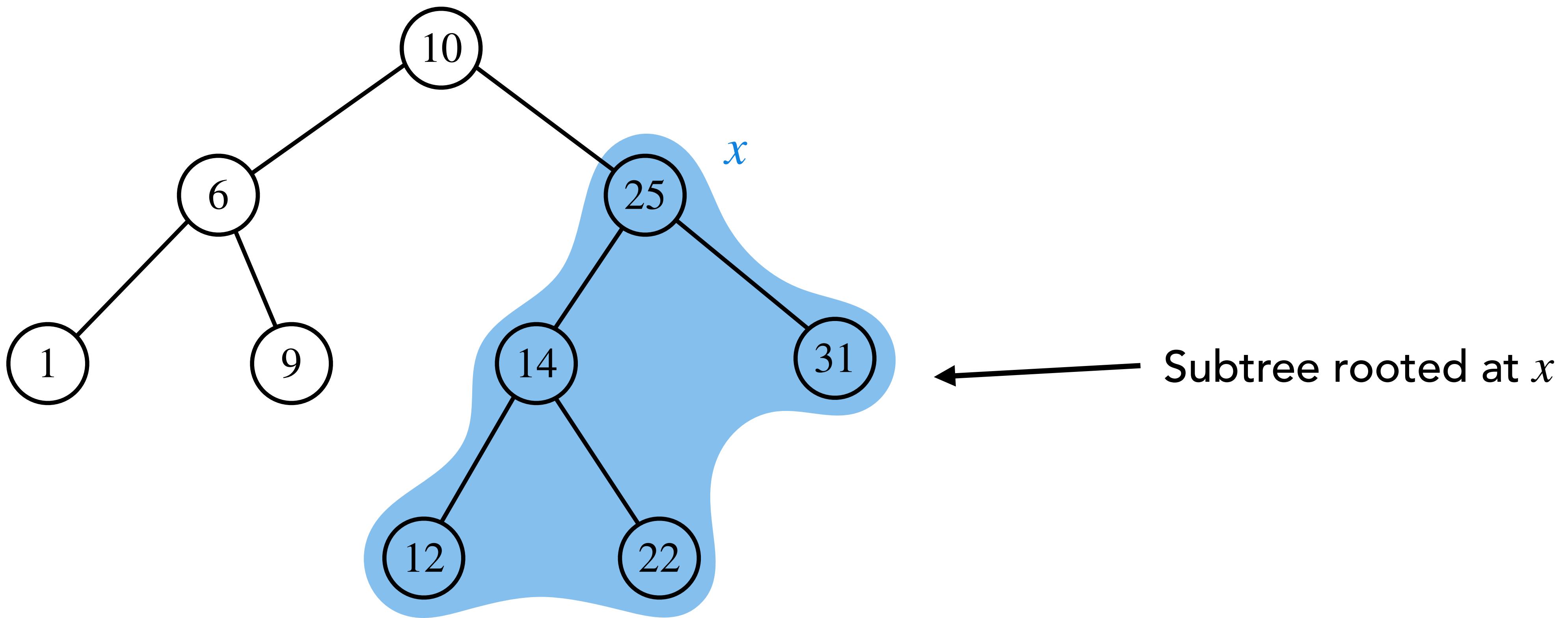
BST: Basic Terminology



BST: Basic Terminology

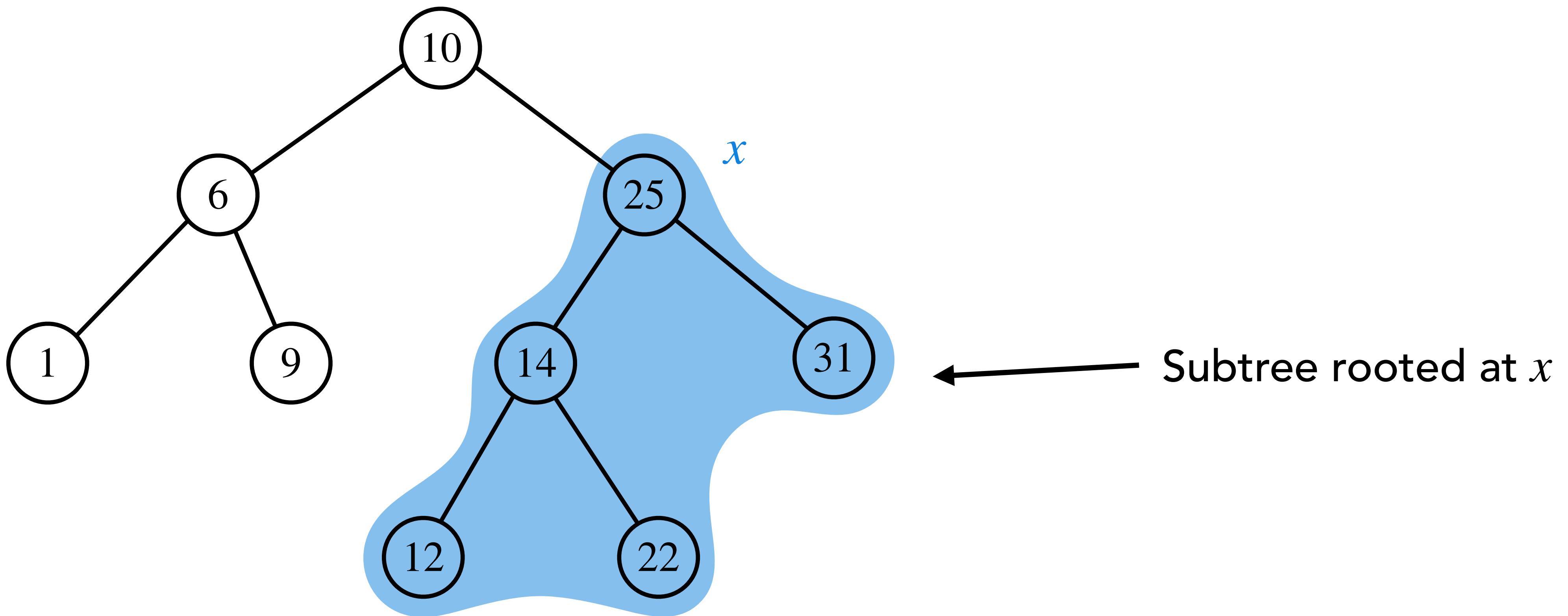


BST: Basic Terminology



BST: Basic Terminology

Defn: Subtree rooted at x is the tree containing only **descendants** of x .



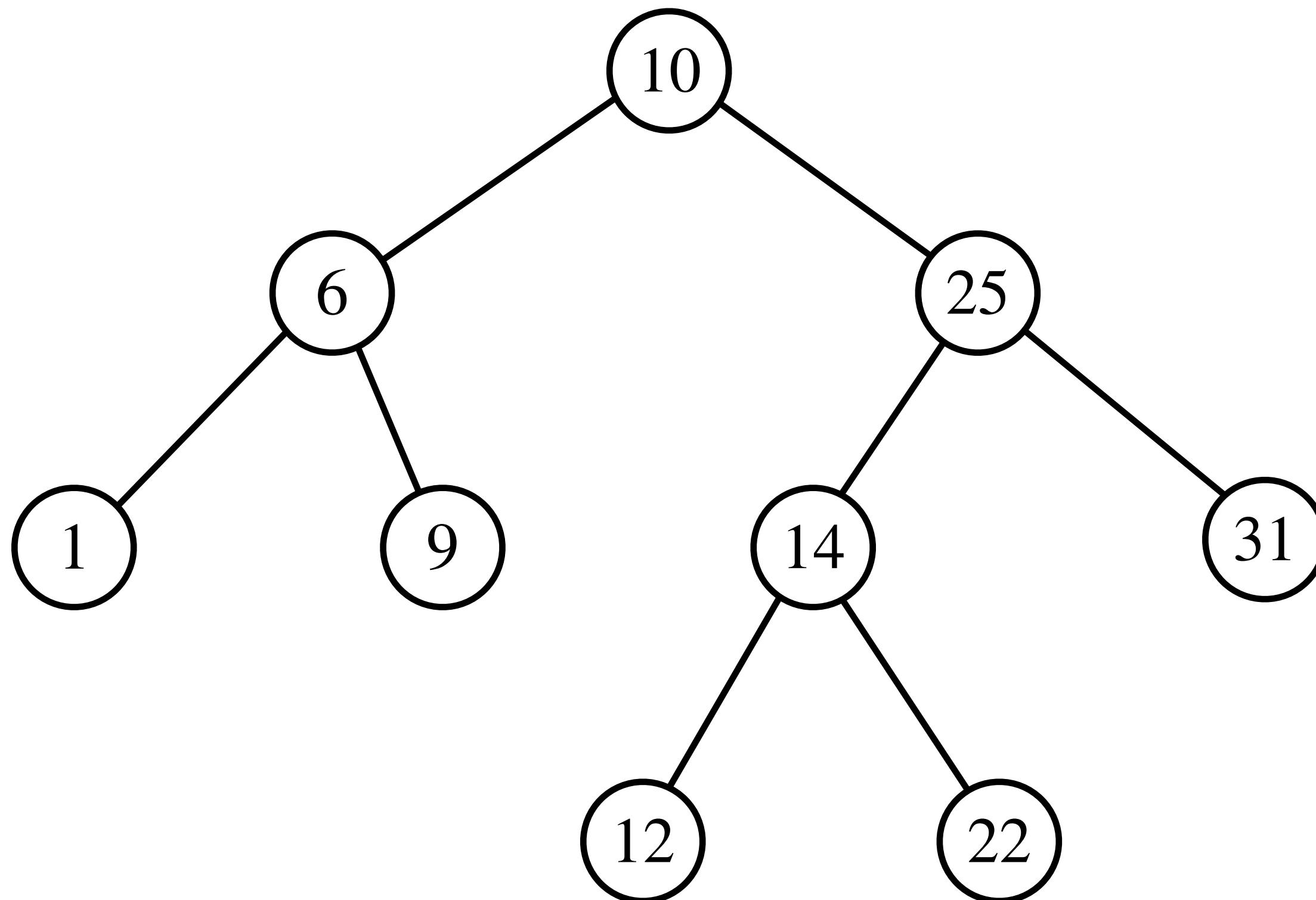
BST: Basic Terminology

BST: Basic Terminology

Defn: Two nodes with the same parent are called **siblings**.

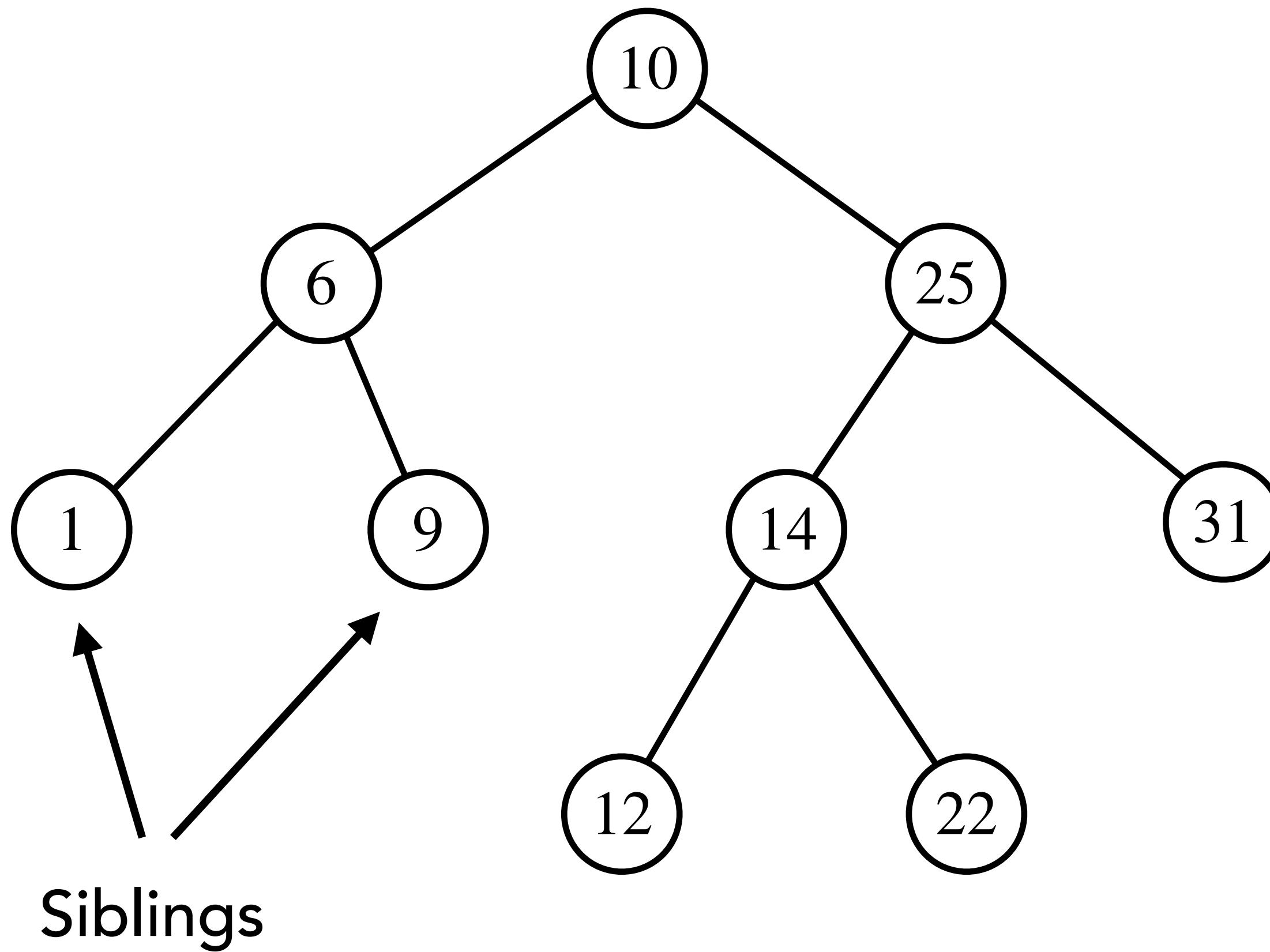
BST: Basic Terminology

Defn: Two nodes with the same parent are called **siblings**.



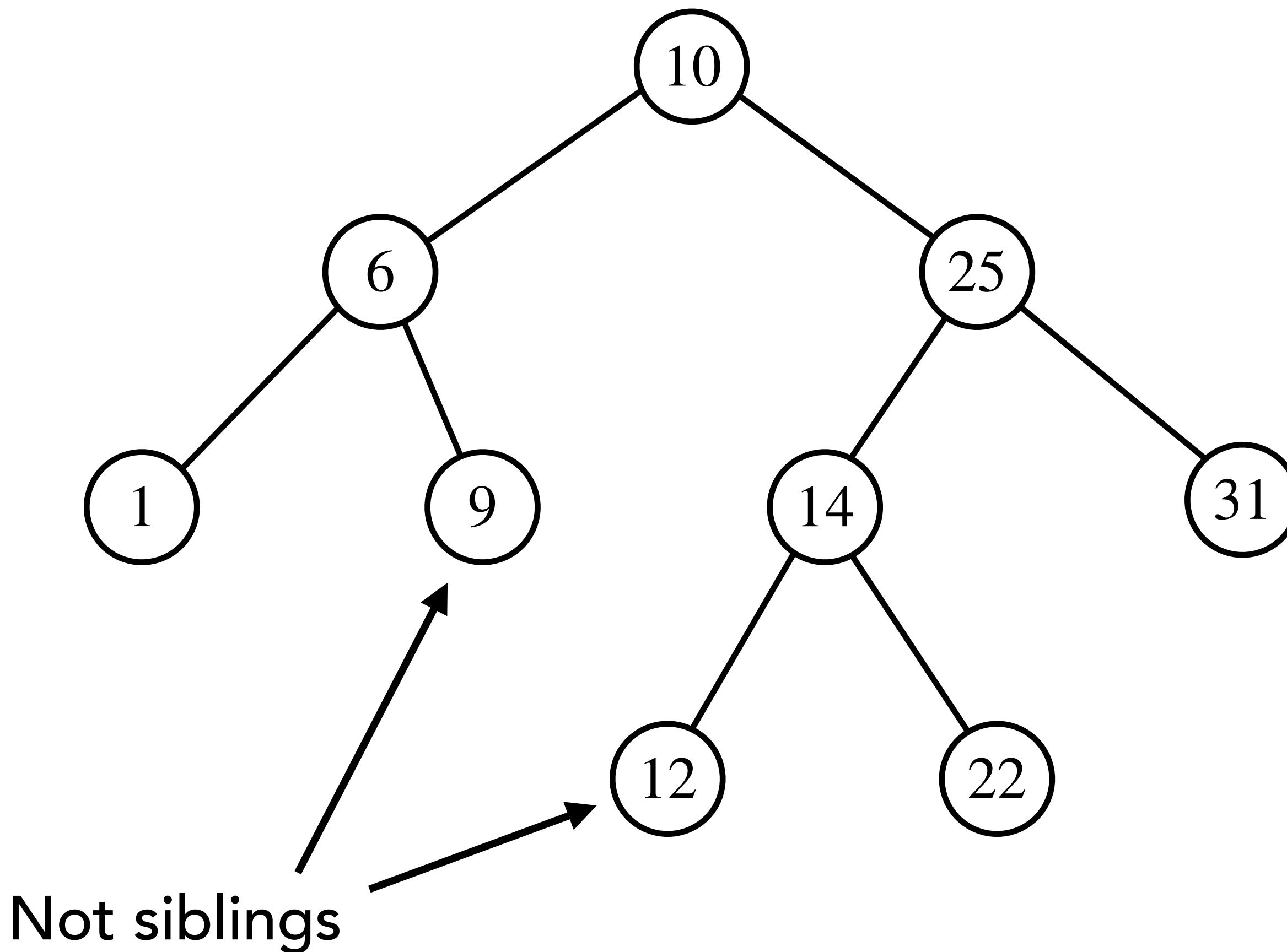
BST: Basic Terminology

Defn: Two nodes with the same parent are called **siblings**.



BST: Basic Terminology

Defn: Two nodes with the same parent are called **siblings**.



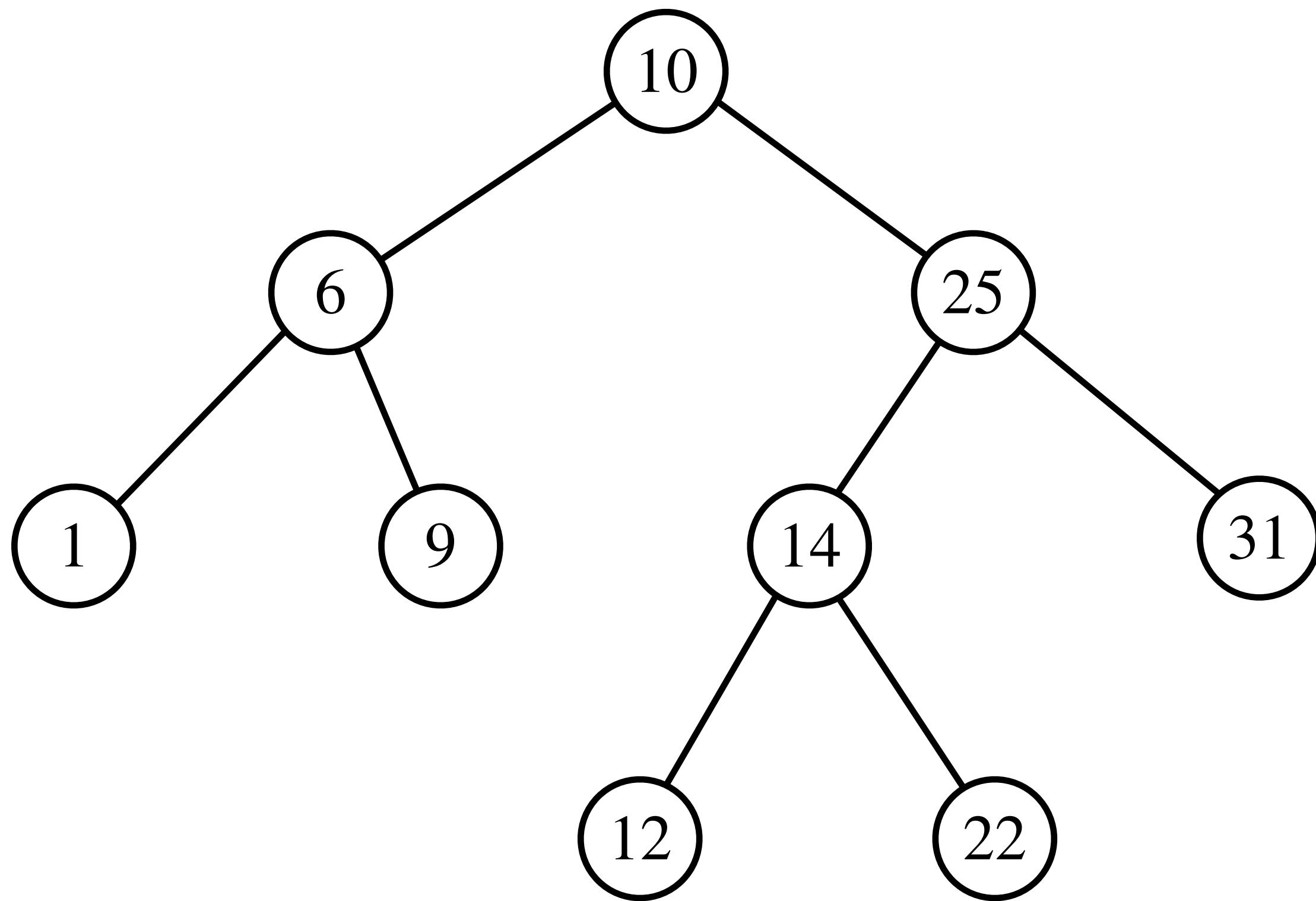
BST: Basic Terminology

BST: Basic Terminology

Defn: Nodes with no children are called **leaves**.

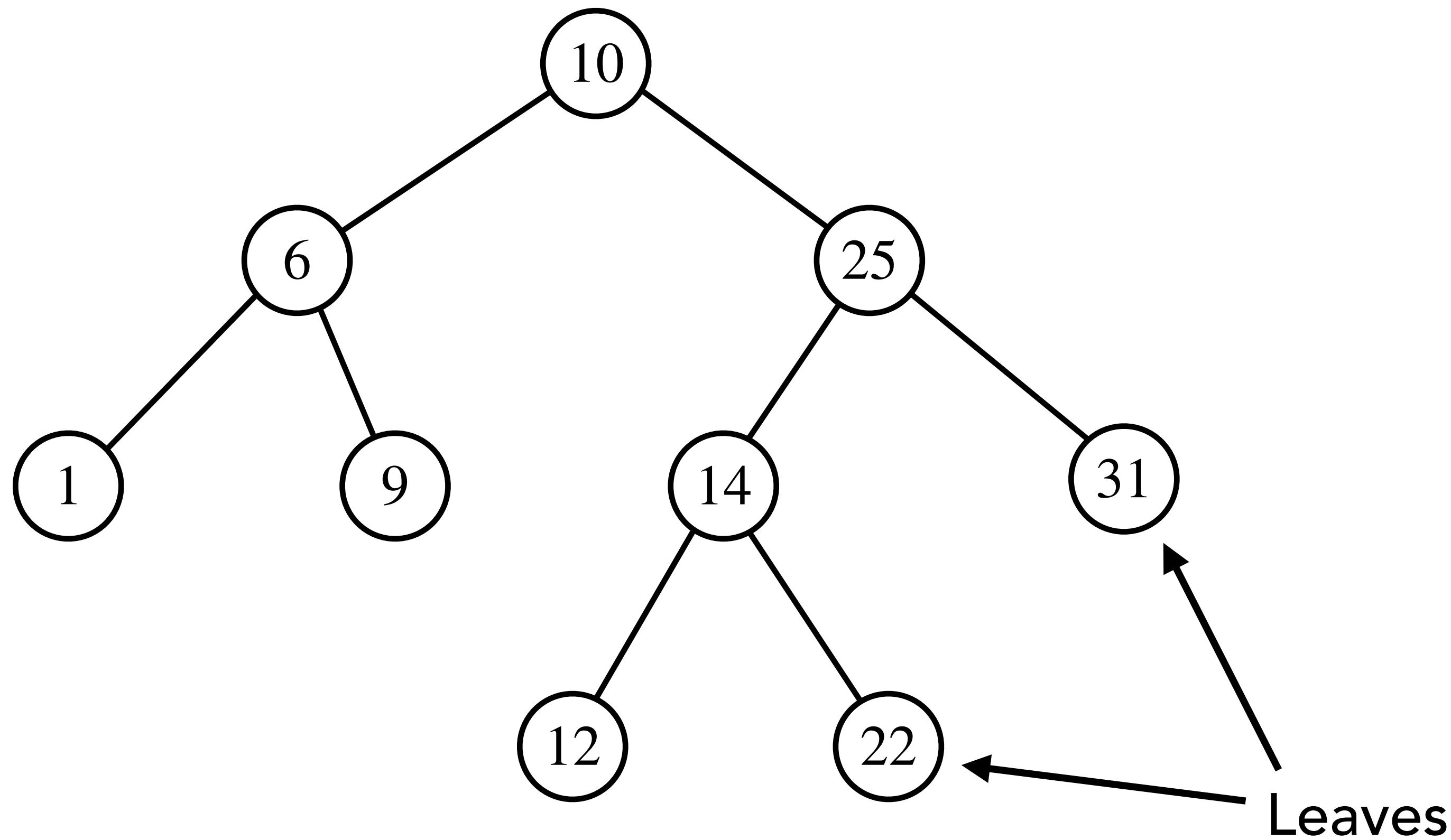
BST: Basic Terminology

Defn: Nodes with no children are called **leaves**.



BST: Basic Terminology

Defn: Nodes with no children are called **leaves**.



BST: Basic Terminology

BST: Basic Terminology

Defn: The **height of a node** in a tree

BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path

BST: Basic Terminology

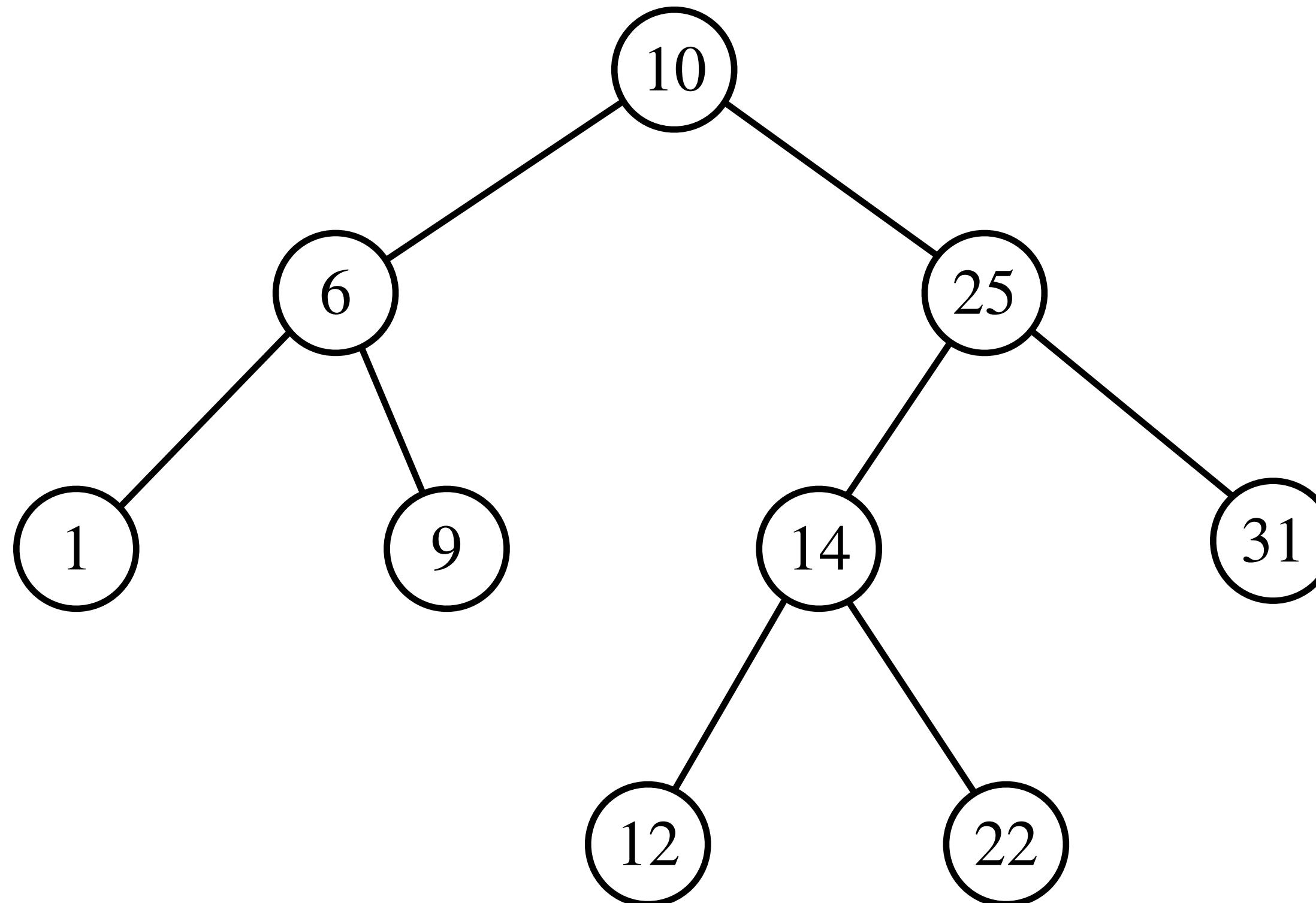
Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf.

BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.

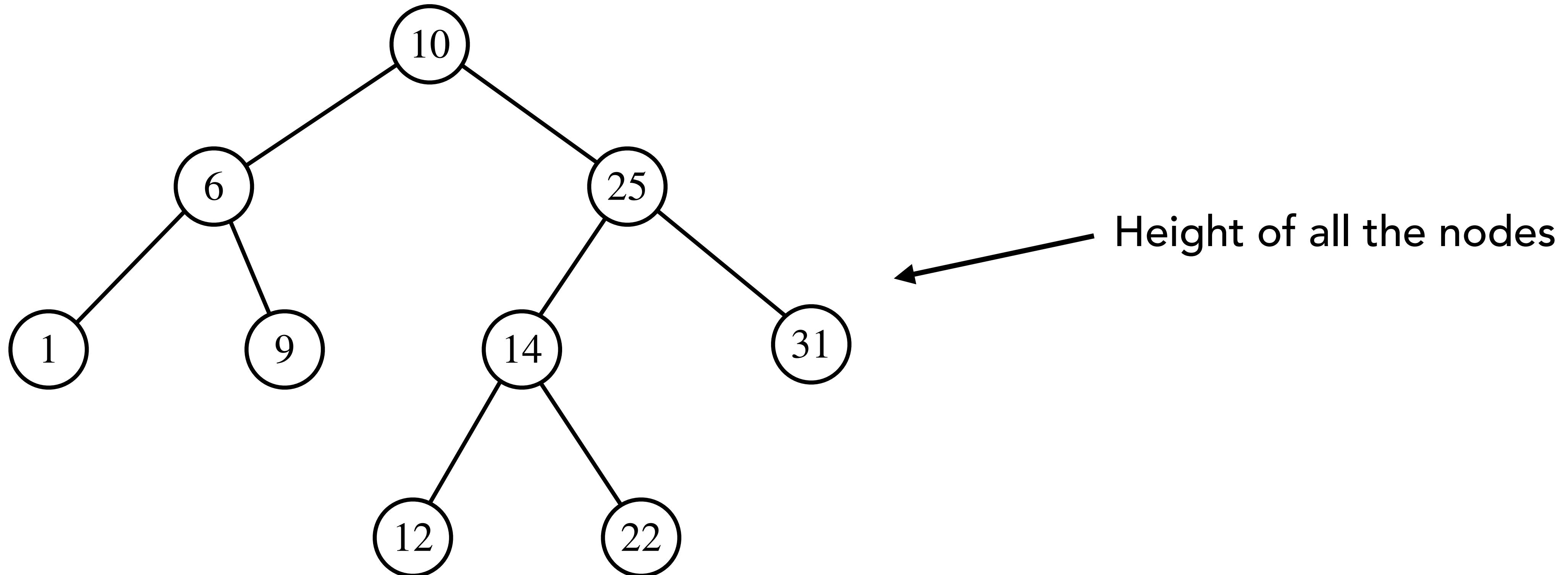
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



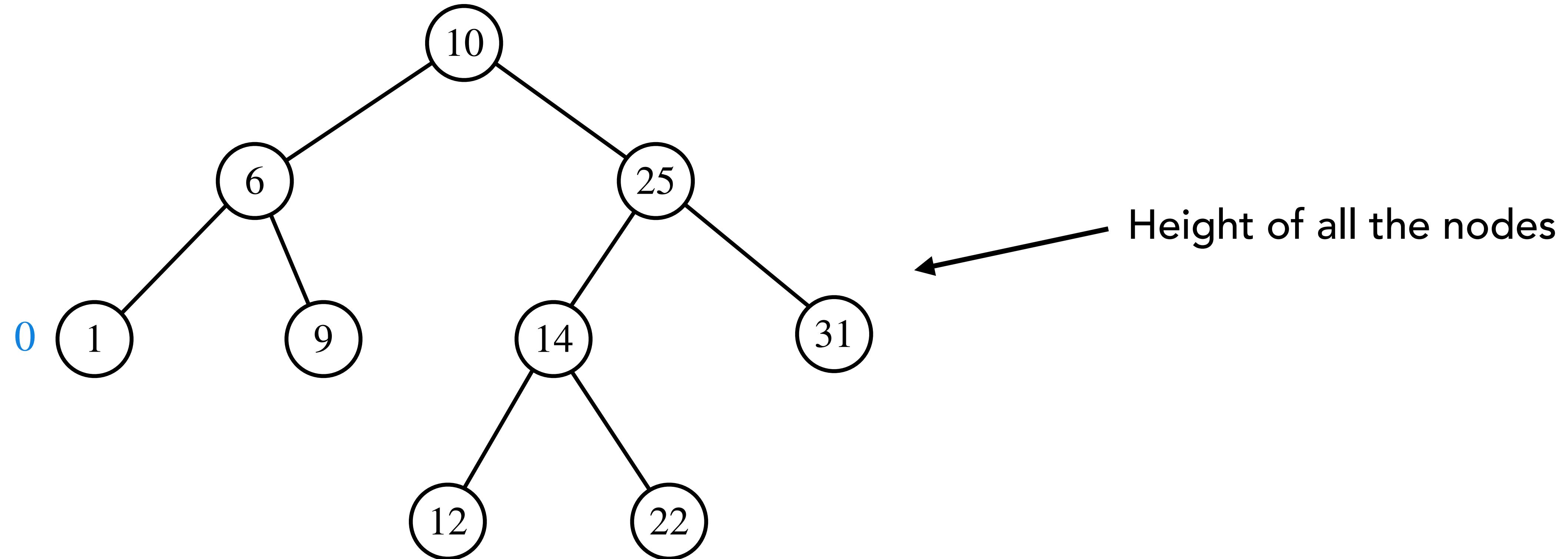
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



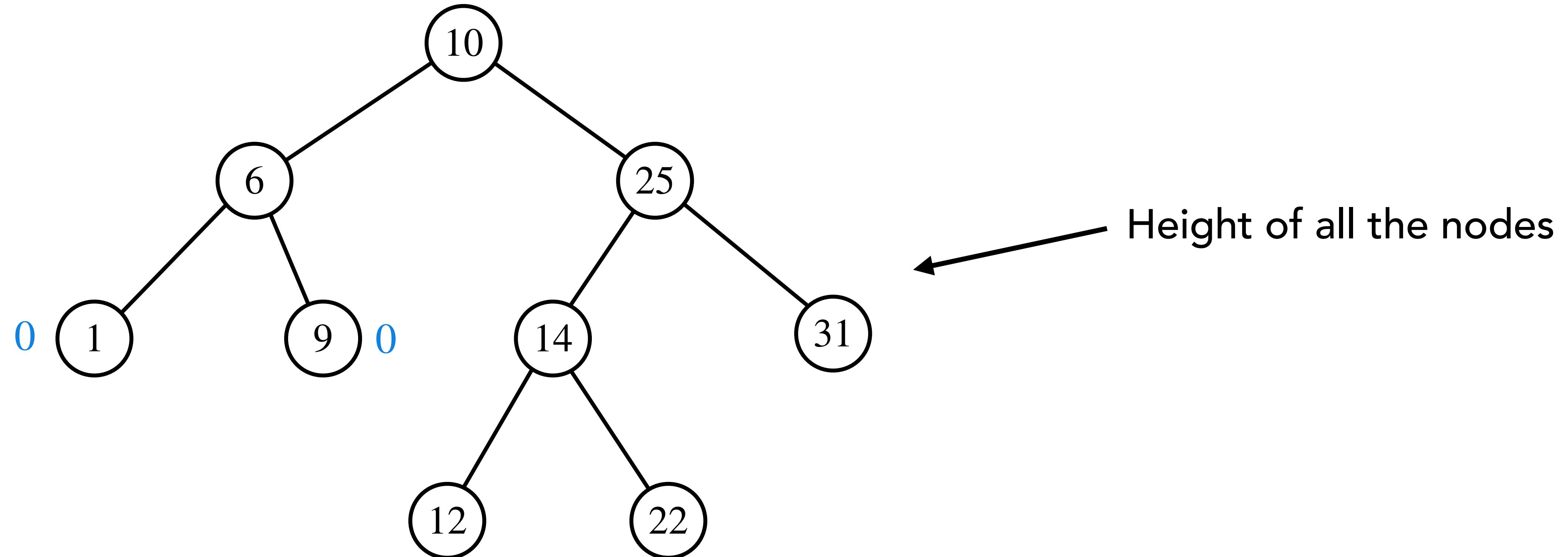
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



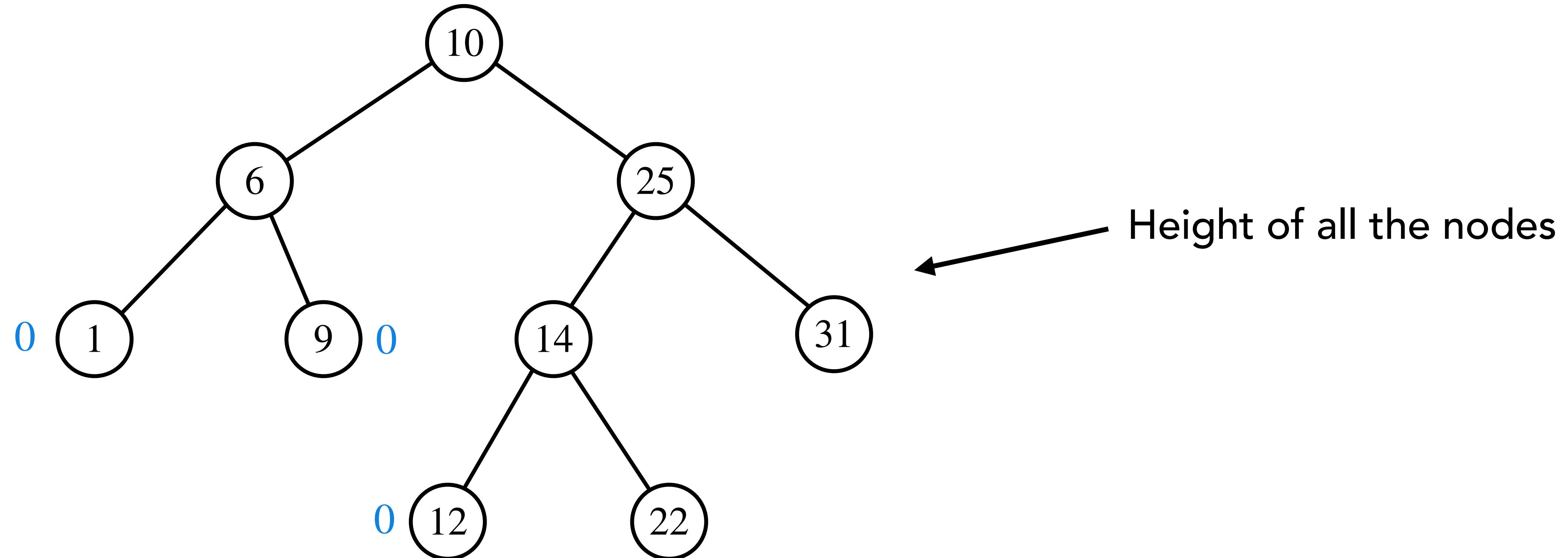
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



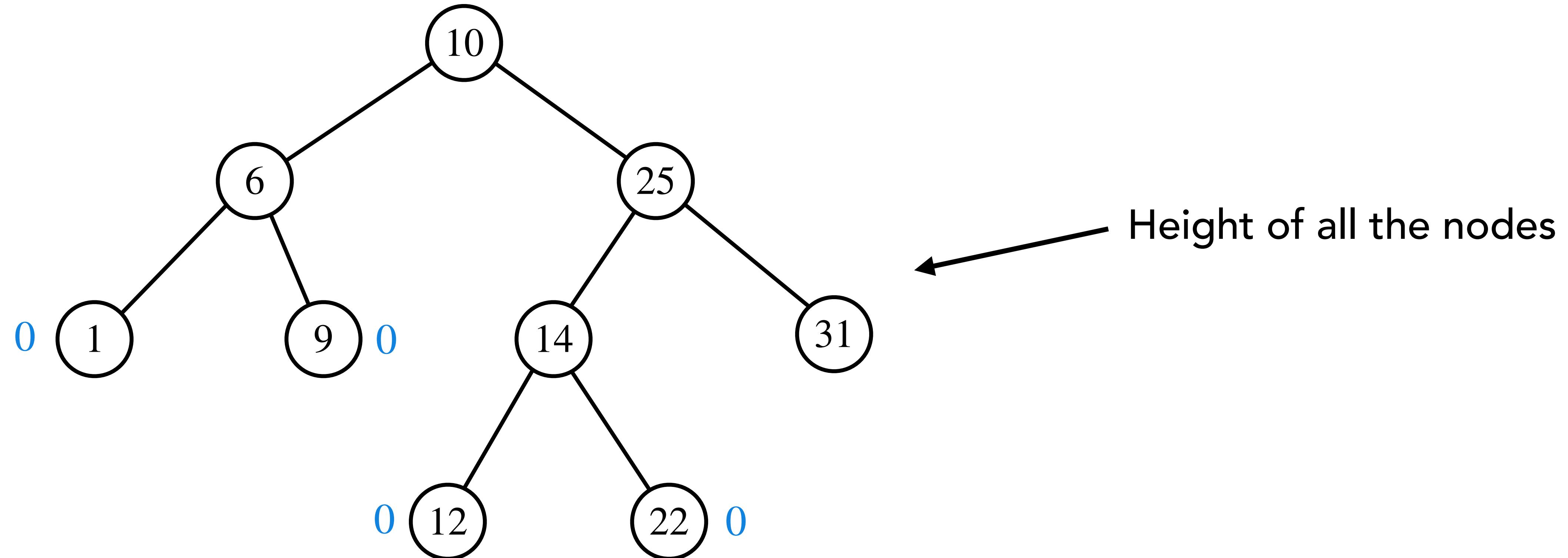
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



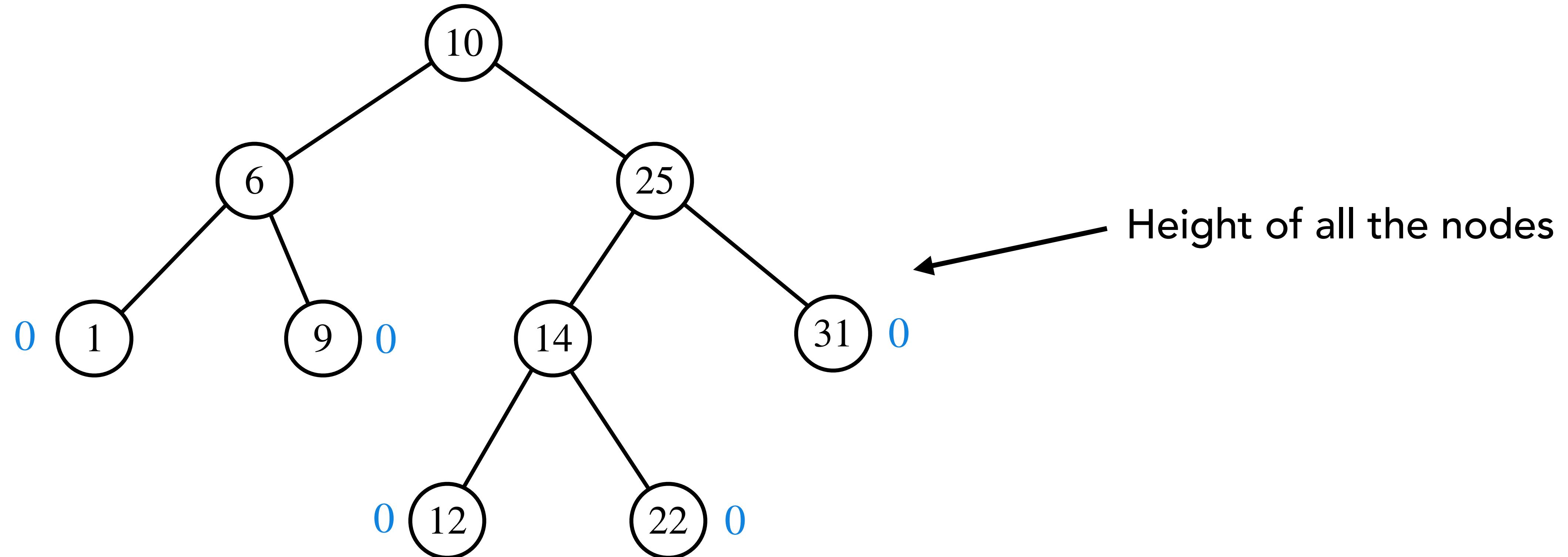
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



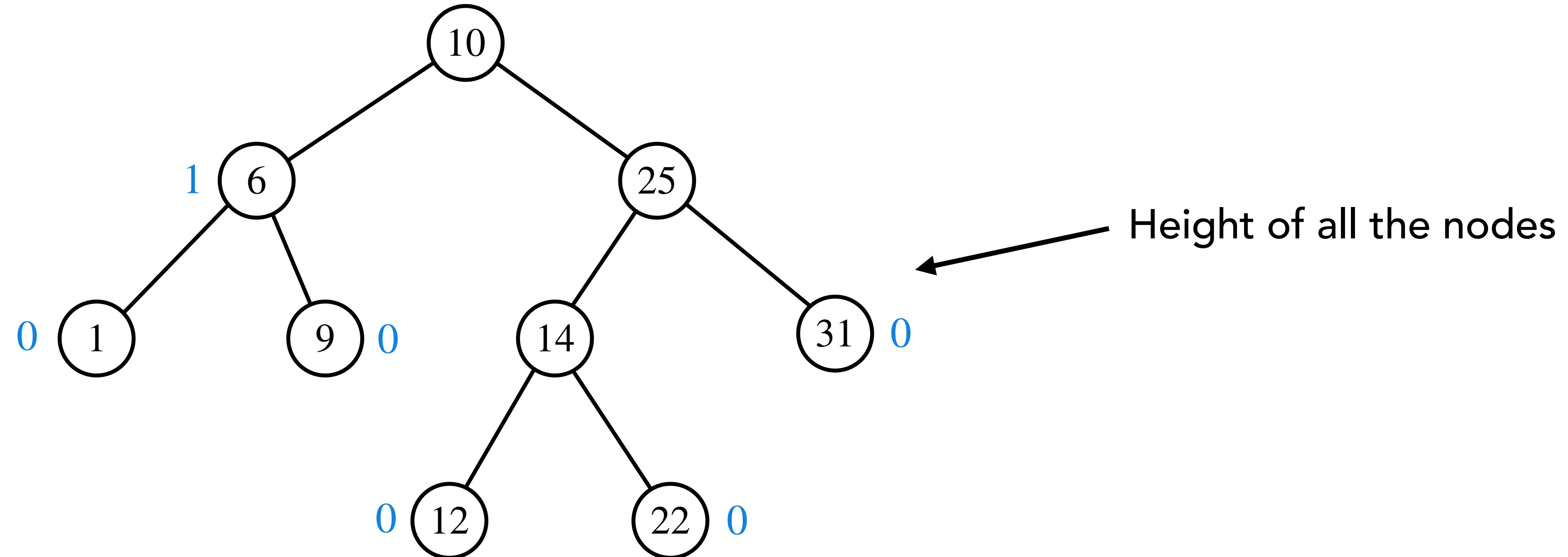
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



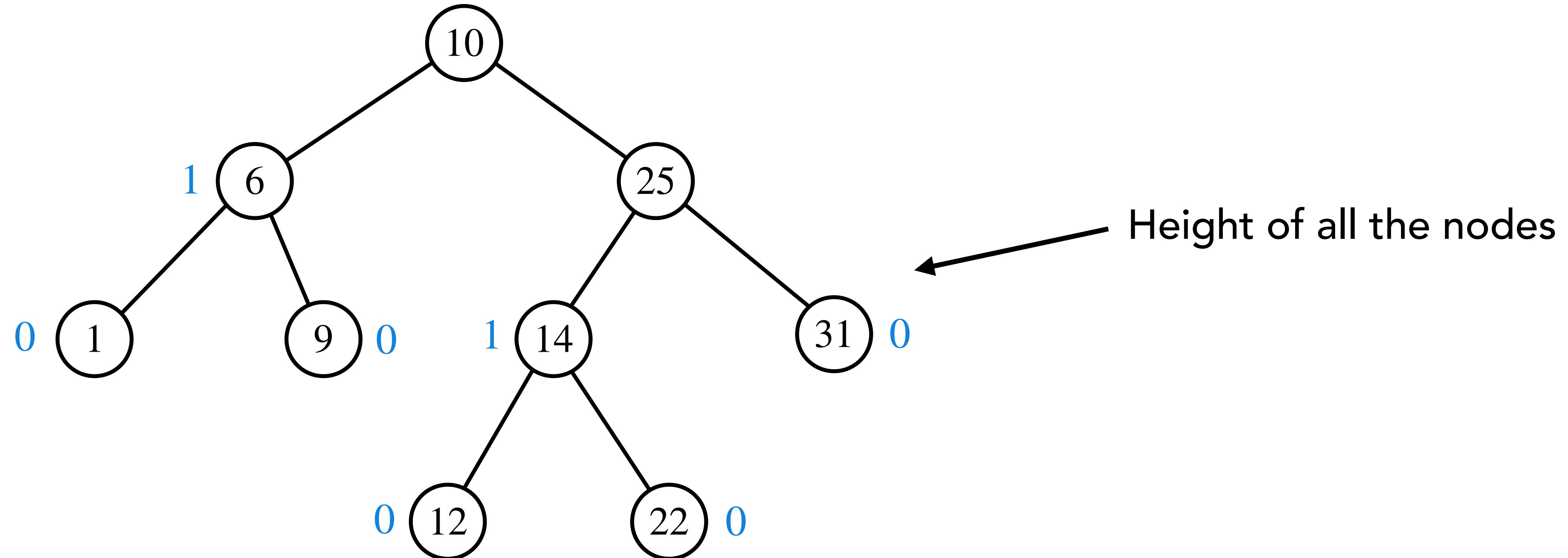
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



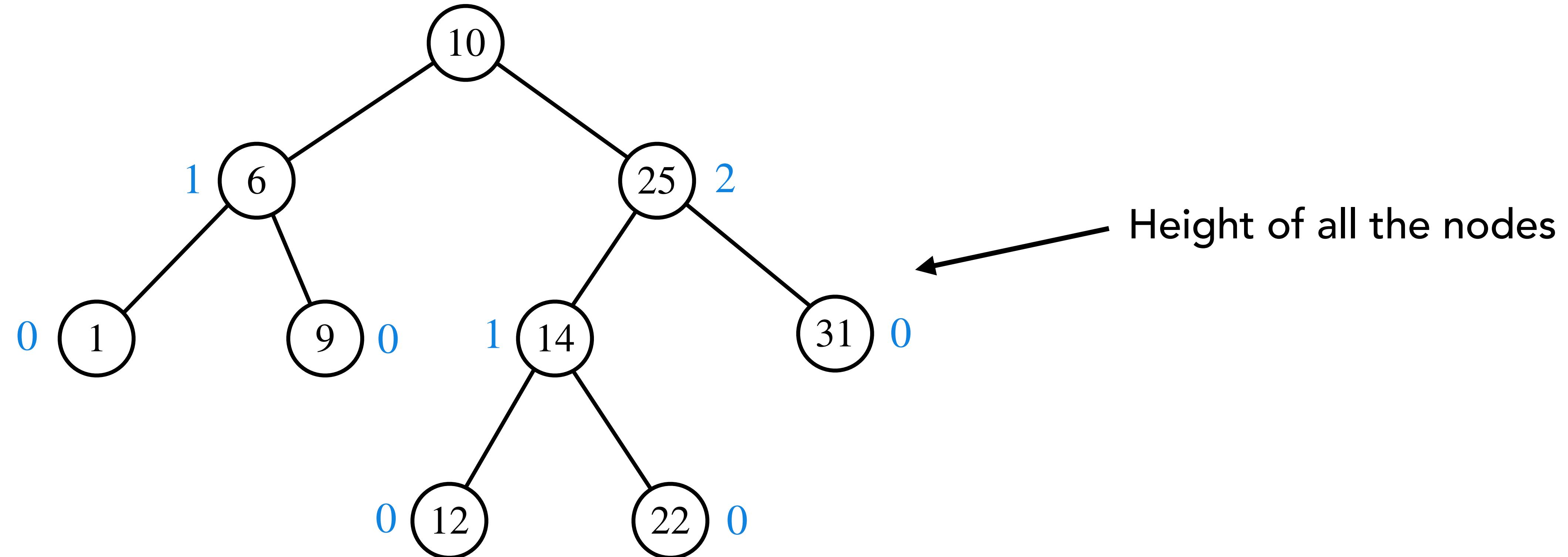
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



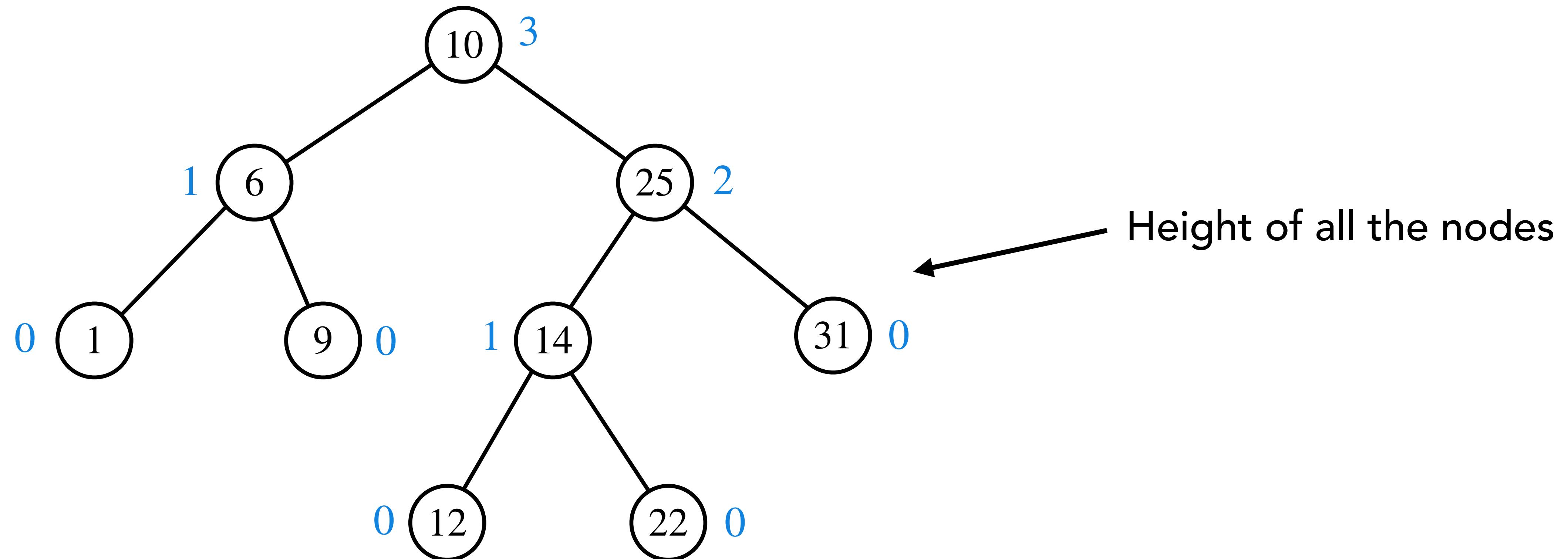
BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



BST: Basic Terminology

Defn: The **height of a node** in a tree is the number of edges on the longest downward path from the node to a leaf. **Height of a tree** is the height of its root.



Inorder Tree Walk

Inorder Tree Walk

Inorder-Tree-Walk(x):

Inorder Tree Walk

Inorder-Tree-Walk(x):

1. if $x \neq \text{NIL}$

Inorder Tree Walk

Inorder-Tree-Walk(x):

1. if $x \neq \text{NIL}$
2. **Inorder-Tree-Walk($x . left$)**

Inorder Tree Walk

Inorder-Tree-Walk(x):

1. if $x \neq \text{NIL}$
2. **Inorder-Tree-Walk($x . left$)**
3. **print $x . key$**

Inorder Tree Walk

Inorder-Tree-Walk(x):

1. if $x \neq \text{NIL}$
2. **Inorder-Tree-Walk($x . left$)**
3. **print $x . key$**
4. **Inorder-Tree-Walk($x . right$)**

Inorder Tree Walk

Calling **Inorder-Tree-Walk(T . *root*)** will print the keys of the BST T in sorted order.

Inorder-Tree-Walk(x):

1. if $x \neq \text{NIL}$
2. **Inorder-Tree-Walk(x . *left*)**
3. **print x . *key***
4. **Inorder-Tree-Walk(x . *right*)**

Inorder Tree Walk

Calling **Inorder-Tree-Walk(T . *root*)** will print the keys of the BST T in sorted order.

Inorder-Tree-Walk(x):

1. if $x \neq \text{NIL}$
2. **Inorder-Tree-Walk(x . *left*)**
3. **print x . *key***
4. **Inorder-Tree-Walk(x . *right*)**

Proof of Correctness: We will prove it using **induction** on the **number of nodes** in the tree.