
Lecture 2

Binary Search Trees

Binary Search Trees

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

• Search for an element with the key .k

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

• Search for an element with the key .k

• Delete an element.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

• Search for an element with the key .k

• Delete an element.

• Minimum or Maximum of the set.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

• Search for an element with the key .k

• Delete an element.

• Minimum or Maximum of the set.

• Successor or Predecessor of an element of the set.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

• Search for an element with the key .k

• Delete an element.

• Minimum or Maximum of the set.

• Successor or Predecessor of an element of the set.

Let’s first implement the

operations through sorted linked list

Linked List Implementation

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Linked List Implementation

Time required in Linked list
implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Let’s try to reduce this first
Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Reducing Search Time in Linked Lists

5 10 33 87

Head

… … 80

1 2 n/2 n − 1 n

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

5 10 33 87

Head

… …

Searching for a node may take at most comparisons.n

80

1 2 n/2 n − 1 n

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

5 10 33 87

Head

… …

What can be done to find a node with around comparisons?n/2

Searching for a node may take at most comparisons.n

80

1 2 n/2 n − 1 n

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

33

Head

5 30… 38 87…

n/2

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

33

Head

5 30… 38 87…

n/2

What can be done to find a node with around comparisons?n/4

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

33

Head

20 60

n/2

n/4 3n/4

30…2517…5 87…6555…38

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

33

Head

20 60

What will happen if we continue like this?

n/2

n/4 3n/4

30…2517…5 87…6555…38

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

33

Head

20 60

What will happen if we continue like this?

n/2

n/4 3n/4

30…2517…5 87…6555…38

Source: DSA Slides of Surender Baswana

We get a binary search tree

Binary Search Tree

33

Head

20 60

10 27 40 75

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

… … …

Source: DSA Slides of Surender Baswana

Binary Search Tree

33

Head

20 60

10 27 40 75

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

… … …

Source: DSA Slides of Surender Baswana

Binary Search Tree

33

Head

20 60

10 27 40 75

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

… … …

Source: DSA Slides of Surender Baswana

Searching now requires at most

 comparisons.Θ(log n)

Binary Search Tree

33

Head

20 60

10 27 40 75

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

… … …

Source: DSA Slides of Surender Baswana

We will soon see that other

operations require at most

 comparisons as well.Θ(log n)

Comparison of Different Data Structures

Time required in

Linked list

implementation

Time required in

BST

implementation

Time required in

Array

implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Time required in

Linked list

implementation

Time required in

BST

implementation

Time required in

Array

implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

Time required in

Linked list

implementation

Time required in

BST

implementation

Time required in

Array

implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

 is the height of the treeh

Time required in

Linked list

implementation

Time required in

BST

implementation

Time required in

Array

implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

??

??

??

??

??

 is the height of the treeh

Time required in

Linked list

implementation

Time required in

BST

implementation

Time required in

Array

implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

??

??

??

??

??

DIY

 is the height of the treeh

How does a BST look like?

How does a BST look like?

10

6

1 9 14 31

25

How does a BST look like?

10

6

1 9 14 31

25

10

28

25

30

35

26

What is a BST?

What is a BST?
• A binary search tree is a collection of nodes of the following type:

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent
key and satellite data

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right child

key and satellite data

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

• Every tree has a root. It’s the only node without the parent.

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

• Every tree has a root. It’s the only node without the parent.

• There is a path from every node to the root.

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

• Every tree has a root. It’s the only node without the parent.

• BST property:

• There is a path from every node to the root.

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

• Every tree has a root. It’s the only node without the parent.

• BST property: Let be a node in a BSTx

• There is a path from every node to the root.

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

• Every tree has a root. It’s the only node without the parent.

• BST property: Let be a node in a BSTx

• There is a path from every node to the root.

 and , be the nodes in its left, right subtree, resp. y z

What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data

• Every tree has a root. It’s the only node without the parent.

• BST property: Let be a node in a BSTx

• There is a path from every node to the root.

Then, .y . key ≤ x . key ≤ z . key
 and , be the nodes in its left, right subtree, resp. y z

What is a BST?

What is a BST?

What is a BST?

10

6 25

1 9 14 35
/ / / / / / / /

/

What is a BST?

NIL values in the absence of parent, left or right child.

10

6 25

1 9 14 35
/ / / / / / / /

/

BST: Basic Terminology

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology

x

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology

x

y

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology

x

y is an ancestor of ,y x

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology

x

y is an ancestor of ,y x
 is a descendant of x y

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology
Defn: Let be a node in a tree with root .x T r

x

y is an ancestor of ,y x
 is a descendant of x y

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology
Defn: Let be a node in a tree with root .x T r

x

y

Then any node on the unique path from to isy r x

 is an ancestor of ,y x
 is a descendant of x y

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology
Defn: Let be a node in a tree with root .x T r

x

y

Then any node on the unique path from to isy r x
called an ancestor of x

 is an ancestor of ,y x
 is a descendant of x y

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology
Defn: Let be a node in a tree with root .x T r

x

y

Then any node on the unique path from to isy r x
called an ancestor of x and is called a descendant of .x y

 is an ancestor of ,y x
 is a descendant of x y

10

6

1 9 14 31

25

12 22

r

BST: Basic Terminology

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

BST: Basic Terminology

x

10

6

1 9 14 31

25

12 22

BST: Basic Terminology

x

10

6

1 9 14 31

25

12 22

BST: Basic Terminology

x

Subtree rooted at x

10

6

1 9 14 31

25

12 22

BST: Basic Terminology

x

Subtree rooted at x

10

6

1 9 14 31

25

12 22

Defn: Subtree rooted at is the tree containing only descendants of .x x

BST: Basic Terminology

BST: Basic Terminology

Defn: Two nodes with the same parent are called siblings.

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

Defn: Two nodes with the same parent are called siblings.

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

Defn: Two nodes with the same parent are called siblings.

Siblings

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

Defn: Two nodes with the same parent are called siblings.

Not siblings

BST: Basic Terminology

BST: Basic Terminology

Defn: Nodes with no children are called leaves.

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

Defn: Nodes with no children are called leaves.

BST: Basic Terminology

10

6

1 9 14 31

25

12 22

Defn: Nodes with no children are called leaves.

Leaves

BST: Basic Terminology

BST: Basic Terminology
Defn: The height of a node in a tree

BST: Basic Terminology
Defn: The height of a node in a tree is the number of edges on the longest downward path

BST: Basic Terminology
Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf.

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

is the number of edges on the longest downward path

from the node to a leaf.

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

00

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

00

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

00

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

000

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

000

1

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

1 000

1

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

1 000

1 2

BST: Basic Terminology
Defn: The height of a node in a tree

Height of a tree is the height of its root.

0

Height of all the nodes

10

6

1 9 14 31

25

12 22

is the number of edges on the longest downward path

from the node to a leaf.

0

1 000

1 2

3

Inorder Tree Walk

Inorder Tree Walk

 Inorder-Tree-Walk : (x)

Inorder Tree Walk

 Inorder-Tree-Walk : (x)
 1. if NILx ≠

Inorder Tree Walk

 Inorder-Tree-Walk : (x)
 1. if NILx ≠
 2. Inorder-Tree-Walk(x . left)

Inorder Tree Walk

 Inorder-Tree-Walk : (x)
 1. if NILx ≠
 2. Inorder-Tree-Walk(x . left)
 3. print x . key

Inorder Tree Walk

 Inorder-Tree-Walk : (x)
 1. if NILx ≠
 2. Inorder-Tree-Walk(x . left)
 3. print x . key
 4. Inorder-Tree-Walk(x . right)

Inorder Tree Walk

Calling Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

 Inorder-Tree-Walk : (x)
 1. if NILx ≠
 2. Inorder-Tree-Walk(x . left)
 3. print x . key
 4. Inorder-Tree-Walk(x . right)

Inorder Tree Walk

Proof of Correctness: We will prove it using induction on the number of nodes in the tree.

Calling Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

 Inorder-Tree-Walk : (x)
 1. if NILx ≠
 2. Inorder-Tree-Walk(x . left)
 3. print x . key
 4. Inorder-Tree-Walk(x . right)

