Lecture 2

Binary Search Trees

Binary Search Trees

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® |nsert an element.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® |nsert an element.

® Search for an element with the key k.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® [nsert an element.
® Search for an element with the key k.

® Delete an element.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® [nsert an element.
® Search for an element with the key k.

® Delete an element.

® Minimum or Maximum of the set.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® |nsert an element.
® Search for an element with the key k.

® Delete an element.

® Minimum or Maximum of the set.

® Successor or Predecessor of an element of the set.

Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® [nsert an element.
® Search for an element with the key k.

® Delete an element. ¥~ Let’s first implement the

e Minimum or Maximum of the set. operations through sorted linked list

® Successor or Predecessor of an element of the set.

Linked List Implementation

| 2 nl?2 n—1 n

/

Head

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

e
s [

oo [
e [

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

s

oo [
e [

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

oo [
e [

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

o
e [
e

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

o
o, o0
=e=s

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

o
o, o0
o

Linked List Implementation

nl?2 n—1 n

1 2

Head

Time required in Linked list

implementation

Let’s try to reduce this first

o0

Reducing Search Time in Linked Lists

nl?2 n—1 n

1 2

Head

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

nl?2 n—1 n

1 2

Head

Searching for a node may take at most n comparisons.

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

nl?2 n—1 n

1 2

Head
Searching for a node may take at most n comparisons.

What can be done to find a node with around n/2 comparisons?

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

Head
n/?2
4

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists
Head
nl/2
/

What can be done to find a node with around n/4 comparisons?

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

[5 Jes - >[17] . [30] . [55] PN oy

What will happen if we continue like this?

Source: DSA Slides of Surender Baswana

Reducing Search Time in Linked Lists

What will happen if we continue like this?

We get a binary search tree

Source: DSA Slides of Surender Baswana

Binary Search Tree

/" N\ /\

/NN /\ /\

Source: DSA Slides of Surender Baswana

Binary Search Tree

/N /\

/NN /\ /\

Source: DSA Slides of Surender Baswana

Binary Search Tree

Head

Searching now requires at most /
O(log n) comparisons. -
33

/N /\

/NN /\ /\

Source: DSA Slides of Surender Baswana

Binary Search Tree

We will soon see that other /

operations require at most

O(logn) comparisons as well.

N\ /\

/N At s

Source: DSA Slides of Surender Baswana

Comparison of Different Data Structures

Comparison of Different Data Structures

Time required in Time required in Time required in
Linked list BST Array
implementation implementation implementation

Insert On)

I
search |G R
e
S o0
suce/Pred ERRNRCIUINERR

Comparison of Different Data Structures

Time required in Time required in Time required in
Linked list BST Array
implementation implementation implementation

O(n)

O(1), O(n)

Comparison of Different Data Structures

Time required in Time required in Time required in
Linked list BST Array
implementation implementation implementation

h is the height of the tree

Comparison of Different Data Structures

Time required in Time required in Time required in
Linked list BST Array
implementation implementation implementation

=

h is the height of the tree

Comparison of Different Data Structures

Insert
Search

Delete

Time required in Time required in Time required in

Linked list BST
implementation

Array

implementation implementation

O(n)

:

e [N

h is the height of the tree

DIY

How does a BST look like?

How does a BST look like?

How does a BST look like?

What is a BST?

What is a BST?

® A binary search tree is a collection of nodes of the following type:

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the right child

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.

® There is a path from every node to the root.

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.
® There is a path from every node to the root.

® BST property:

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.

® There is a path from every node to the root.

® BST property: Let x be a node in a BST

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.

® There is a path from every node to the root.

® BST property: Let x be a node in a BST and y, z be the nodes in its left, right subtree, resp.

What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.

® There is a path from every node to the root.

® BST property: Let x be a node in a BST and y, z be the nodes in its left, right subtree, resp.
Then, y.key < x.key < z.key.

What is a BST?

What is a BST?

What is a BST?

What is a BST?

c 1 S
e -
6
aly a
- ~ e
9

NIL values in the absence of parent, left or right child.

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

e Y @ y is an ancestor of x,

BST: Basic Terminology

e Y @ y is an ancestor of x,
«— xisadescendant of y

BST: Basic Terminology

Defn: Let x be a node in a tree T with root r.

e Y @ y is an ancestor of x,
«— xisadescendant of y

BST: Basic Terminology

Defn: Let x be a node in a tree T with root 7. Then any node y on the unigue path from r to x is

e Y @ y is an ancestor of x,
«— xisadescendant of y

BST: Basic Terminology

Defn: Let x be a node in a tree T with root 7. Then any node y on the unigue path from r to x is

called an ancestor of x

e Y @ y is an ancestor of x,
«— xisadescendant of y

BST: Basic Terminology

Defn: Let x be a node in a tree T with root 7. Then any node y on the unigue path from r to x is

called an ancestor of x and x is called a descendant of y.
O

e Y @ y is an ancestor of x,
«— xisadescendant of y

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

BST: Basic Terminology

G e @ @ <«— Subtree rooted at x

BST: Basic Terminology

Defn: Subtree rooted at x is the tree containing only descendants of x.

G e @ @ <«— Subtree rooted at x

X

BST: Basic Terminology

BST: Basic Terminology

Defn: Two nodes with the same parent are called siblings.

BST: Basic Terminology

Defn: Two nodes with the same parent are called siblings.

BST: Basic Terminology

Defn: Two nodes with the same parent are called siblings.

\/ ® &

Siblings

BST: Basic Terminology

Defn: Two nodes with the same parent are called siblings.

//, &

Not siblings

BST: Basic Terminology

BST: Basic Terminology

Defn: Nodes with no children are called leaves.

BST: Basic Terminology

Defn: Nodes with no children are called leaves.

BST: Basic Terminology

Defn: Nodes with no children are called leaves.

BST: Basic Terminology

BST: Basic Terminology

Defn: The height of a node in a tree

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf.

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

e @ o — Height of all the nodes
OO 9O

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

Height of all the nodes
/ g

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

OB OO 9O
) @&

Height of all the nodes
/ g

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

OB OO 9O
JORO

Height of all the nodes
/ g

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

OO O G
0 o

Height of all the nodes
/ g

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

- Height of all the nodes
MO OLENC) OF

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

- Height of all the nodes
MO OLENC) OF

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

1 e @ o — Height of all the nodes
0 (17 (9)o 1014 Ok

0 o

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.

1 e @ 2 L Height of all the nodes
0 (17 (9)o 1014 Ok

0 o

BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.
(1)

1 e @ 2 L Height of all the nodes
0 (17 (9)o 1014 Ok

0 o

Inorder Tree Walk

Inorder Tree Walk

Inorder-Tree-Walk(x):

Inorder Tree Walk

Inorder-Tree-Walk(x):
1. if x # NIL

Inorder Tree Walk

Inorder-Tree-Walk(x):
1. if x # NIL
2. Inorder-Tree-Walk(x . [eft)

Inorder Tree Walk

Inorder-Tree-Walk(x):

1. if x # NIL

2. Inorder-Tree-Walk(x . [eft)
3. print x . key

Inorder Tree Walk

Inorder-Tree-Walk(x):

1. if x # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Inorder Tree Walk

Calling Inorder-Tree-Walk(7". roof) will print the keys of the BST T in sorted order.

Inorder-Tree-Walk(x):

1. if x # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Inorder Tree Walk

Calling Inorder-Tree-Walk(7". roof) will print the keys of the BST T in sorted order.

Inorder-Tree-Walk(x):

1. if x # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Proof of Correctness: \We will prove it using induction on the number of nodes in the tree.

