Lecture 2

Binary Search Trees



Binary Search Trees




Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:



Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® |nsert an element.



Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® |nsert an element.

® Search for an element with the key k.



Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® [nsert an element.
® Search for an element with the key k.

® Delete an element.



Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® [nsert an element.
® Search for an element with the key k.

® Delete an element.

® Minimum or Maximum of the set.



Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® |nsert an element.
® Search for an element with the key k.

® Delete an element.

® Minimum or Maximum of the set.

® Successor or Predecessor of an element of the set.



Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

® [nsert an element.
® Search for an element with the key k.

® Delete an element. ¥~ Let’s first implement the

e Minimum or Maximum of the set. operations through sorted linked list

® Successor or Predecessor of an element of the set.
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Let’s try to reduce this first
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Searching for a node may take at most n comparisons.

What can be done to find a node with around n/2 comparisons?
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What can be done to find a node with around n/4 comparisons?
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Reducing Search Time in Linked Lists

What will happen if we continue like this?

We get a binary search tree

Source: DSA Slides of Surender Baswana
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Binary Search Tree

We will soon see that other /

operations require at most

O(logn) comparisons as well.
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Comparison of Different Data Structures
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What is a BST?

® A binary search tree is a collection of nodes of the following type:

pointer to the parent

key and satellite data

pointer to the left child pointer to the right child

® Every tree has a root. It's the only node without the parent.

® There is a path from every node to the root.

® BST property: Let x be a node in a BST and y, z be the nodes in its left, right subtree, resp.
Then, y.key < x.key < z.key.
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What is a BST?
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NIL values in the absence of parent, left or right child.
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BST: Basic Terminology

Defn: Let x be a node in a tree T with root 7. Then any node y on the unigue path from r to x is

called an ancestor of x and x is called a descendant of y.
O

e Y @ y is an ancestor of x,
«—  xisadescendant of y
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BST: Basic Terminology

Defn: Subtree rooted at x is the tree containing only descendants of x.

G e @ @ <«— Subtree rooted at x

X
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BST: Basic Terminology

Defn: The height of a node in a tree is the number of edges on the longest downward path

from the node to a leaf. Height of a tree is the height of its root.
(1)
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Inorder Tree Walk

Calling Inorder-Tree-Walk(7". roof) will print the keys of the BST T in sorted order.

Inorder-Tree-Walk(x):

1. if x # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Proof of Correctness: \We will prove it using induction on the number of nodes in the tree.



