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Binary Search Trees

Binary Search Trees (BSTs) are used to maintain a dynamic set that supports operations such as:

• Insert an element.

• Search for an element with the key .k

• Delete an element.

• Minimum or Maximum of the set.

• Successor or Predecessor of an element of the set.

Let’s first implement the 

operations through sorted linked list 
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What will happen if we continue like this?

n/2
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30…2517…5 87…6555…38

Source: DSA Slides of Surender Baswana

We get a binary search tree
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We will soon see that other 

operations require at most 


 comparisons as well.Θ(log n)



Comparison of Different Data Structures



Time required in 

Linked list


implementation

Time required in 

BST


implementation

Time required in 

Array


implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures



Time required in 

Linked list


implementation

Time required in 

BST


implementation

Time required in 

Array


implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)



Time required in 

Linked list


implementation

Time required in 

BST


implementation

Time required in 

Array


implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

 is the height of the treeh



Time required in 

Linked list


implementation

Time required in 

BST


implementation

Time required in 

Array


implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

??

??

??

??

??

 is the height of the treeh



Time required in 

Linked list


implementation

Time required in 

BST


implementation

Time required in 

Array


implementation

Insert

Search

Delete

Min/Max

Succ/Pred

Θ(n)
Θ(n)

Θ(1)

Θ(1), Θ(n)
Θ(1)

Comparison of Different Data Structures

Θ(h)
Θ(h)

Θ(h)

Θ(h)
Θ(h)

??

??

??

??

??

DIY

 is the height of the treeh



How does a BST look like?



How does a BST look like?

10

6

1 9 14 31

25



How does a BST look like?

10

6

1 9 14 31

25

10

28

25

30

35

26



What is a BST?



What is a BST?
• A binary search tree is a collection of nodes of the following type:



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent
key and satellite data 



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right child

key and satellite data 



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 

• Every tree has a root. It’s the only node without the parent.



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 

• Every tree has a root. It’s the only node without the parent.

• There is a path from every node to the root.



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 

• Every tree has a root. It’s the only node without the parent.

• BST property:

• There is a path from every node to the root.



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 

• Every tree has a root. It’s the only node without the parent.

• BST property: Let  be a node in a BSTx

• There is a path from every node to the root.



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 

• Every tree has a root. It’s the only node without the parent.

• BST property: Let  be a node in a BSTx

• There is a path from every node to the root.

 and ,  be the nodes in its left, right subtree, resp. y z



What is a BST?
• A binary search tree is a collection of nodes of the following type:

pointer to the parent

pointer to the right childpointer to the left child

key and satellite data 

• Every tree has a root. It’s the only node without the parent.

• BST property: Let  be a node in a BSTx

• There is a path from every node to the root.

Then, .y . key ≤ x . key ≤ z . key
 and ,  be the nodes in its left, right subtree, resp. y z
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Calling Inorder-Tree-Walk  will print the keys of the BST  in sorted order.(T . root) T
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Proof of Correctness: We will prove it using induction on the number of nodes in the tree.

Calling Inorder-Tree-Walk  will print the keys of the BST  in sorted order.(T . root) T

 Inorder-Tree-Walk :           (x)
 1.    if NILx ≠
 2.        Inorder-Tree-Walk(x . left)
 3.        print x . key
 4.        Inorder-Tree-Walk(x . right)


